Skip to main content

Temperature and chemical potential

  • Chapter
  • First Online:
Quantum Chromodynamics on the Lattice

Part of the book series: Lecture Notes in Physics ((LNP,volume 788))

  • 4503 Accesses

Abstract

Since the big bang the universe has cooled down substantially. Still, understanding QCD at high temperature and at high matter density is important for various reasons. One of them is obviously a better understanding of quarkand gluon matter shortly after the big bang and of the condensation of hadrons in the cooling process. Many objects in the universe like neutron stars supposedly have high enough density or temperature to expect that hadronic matter behaves differently compared to usual atoms. On earth very energetic collisions of heavy ions provide also possibilities to study matter under extreme conditions. Thus studying QCD at high temperature and density from first principles is a challenging task for the lattice approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 89.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Z. Fodor: PoS LATTICE2007, 011 (2007)

    Google Scholar 

  2. F. Karsch: PoS LATTICE2007, 015 (2007)

    Google Scholar 

  3. O. Philipsen: in Conceptual and Numerical Challenges in Femto- and Peta-Scale Physics, edited by C. Gattringer et al., The European Physical Journal ST 152, p. 29 (Springer, Berlin, Heidelberg, New York 2007)

    Google Scholar 

  4. C. DeTar: PoS LATTICE2008, 001 (2008)

    Google Scholar 

  5. S. Ejiri: PoS LATTICE2008, 002 (2008)

    Google Scholar 

  6. A. M. Polyakov: Phys. Lett. B 72, 477 (1978)

    Article  MathSciNet  ADS  Google Scholar 

  7. L. Susskind: Phys. Rev. D 20, 2610 (1979)

    Article  ADS  Google Scholar 

  8. G. ’t Hooft: Nucl. Phys. B 153, 141 (1979)

    Article  ADS  Google Scholar 

  9. C. B. Lang and M. Wiltgen: Phys. Lett. B 131, 153 (1983)

    Article  ADS  Google Scholar 

  10. G. Bali: Phys. Rep. 343, 1 (2001)

    Article  ADS  MATH  Google Scholar 

  11. H. Ichie, V. Bornyakov, T. Streuer, and G. Schierholz: Nucl. Phys. A 721, 899 (2003)

    Article  ADS  Google Scholar 

  12. F. Bissey et al.: Phys. Rev. D 76, 114512 (2007)

    Article  ADS  Google Scholar 

  13. Y. Peng and R. W. Haymaker: Phys. Rev. D 47, 5104 (1993)

    Article  ADS  Google Scholar 

  14. B. Svetitsky and L. G. Yaffe: Nucl. Phys. B 210, 423 (1982)

    Article  ADS  Google Scholar 

  15. B. Svetitsky and L. G. Yaffe: Phys. Rev. D 26, 963 (1982)

    Article  ADS  Google Scholar 

  16. L. D. McLerran and B. Svetitsky: Phys. Lett. B 98, 195 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  17. J. Kuti, J. Polonyi, and K. Szlachanyi: Phys. Lett. B 98, 199 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  18. L. D. McLerran and B. Svetitsky: Phys. Rev. D 24, 450 (1981)

    Article  ADS  Google Scholar 

  19. E. Laermann and O. Philipsen: Ann. Rev. Nucl. Part. Sci. 53, 163 (2003)

    Article  ADS  Google Scholar 

  20. F. Karsch and E. Laermann: in Quark Gluon Plasma, edited by R. C. Hwa, p. 1 (World Scientific, Singapore 2003)

    Google Scholar 

  21. J. L. Cardy: Finite-Size Scaling (North-Holland, Amsterdam 1988)

    Google Scholar 

  22. J. Engels, F. Karsch, I. Montvay, and H. Satz: Phys. Lett. B 101, 89 (1981)

    Article  ADS  Google Scholar 

  23. J. Engels, F. Karsch, I. Montvay, and H. Satz: Nucl. Phys. B 205 [FS5], 545 (1982)

    Article  ADS  Google Scholar 

  24. I. Montvay and G. Münster: Quantum Fields on a Lattice (Cambridge University Press, Cambridge New York 1994)

    Book  Google Scholar 

  25. K. Fredenhagen and M. Marcu: Commun. Math. Phys. 92, 81 (1983)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. J. Bricmont and J. Fröhlich: Phys. Lett. B 122, 73 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  27. Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo: Phys. Lett. B 643, 46 (2006)

    Article  ADS  Google Scholar 

  28. M. Cheng et al.: Phys. Rev. D 74, 054507 (2006)

    Article  ADS  Google Scholar 

  29. Karsch, F.: Lect. Notes Phys. 583, 209 (2002)

    Article  ADS  Google Scholar 

  30. Y. Aoki, Z. Fodor, S. D. Katz, and K. K. Szabo: JHEP 0601, 089 (2006)

    Article  ADS  Google Scholar 

  31. C. Bernard et al.: PoS LAT2005, 156 (2005)

    Google Scholar 

  32. R. D. Pisarski and F. Wilczek: Phys. Rev. D 29, 338 (1984)

    Article  ADS  Google Scholar 

  33. E. Shuryak: Phys. Rep. 61, 71 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  34. R. P. Feynman: Statistical Mechanics (Westview Press, Boulder 1998)

    MATH  Google Scholar 

  35. F. Karsch, E. Laermann, and A. Peikert: Phys. Lett. B 478, 447 (2000)

    Article  ADS  Google Scholar 

  36. F. Karsch: in AIP Conf. Proc. (PANIC05), Vol. 842, p.20 (Am. Inst. Phys., Melville, New York 2006)

    Google Scholar 

  37. P. de Forcrand et al.: Phys. Rev. D 63, 054501 (2001)

    Article  ADS  Google Scholar 

  38. I. Wetzorke et al.: Nucl. Phys. (Proc.Suppl.) 106, 510 (2002)

    Article  ADS  Google Scholar 

  39. M. Asakawa, T. Hatsuda, and Y. Nakahara: Nucl. Phys. A 715, 863 (2003)

    Article  ADS  Google Scholar 

  40. J. B. Kogut, J. F. Lagae, and D. K. Sinclair: Phys. Rev. D 58, 054504 (1998)

    Article  ADS  Google Scholar 

  41. I. Pushkina et al.: Phys. Lett. B 609, 265 (2005)

    Article  ADS  Google Scholar 

  42. S. Wissel et al.: PoS LAT2005, 164 (2005)

    Google Scholar 

  43. R. V. Gavai, S. Gupta, and R. Lacaze: PoS LAT2006, 135 (2006)

    Google Scholar 

  44. P. Hasenfratz and F. Karsch: Phys. Lett. B 125, 308 (1983)

    Article  ADS  Google Scholar 

  45. J. Kogut, H. Matsuoka, M. Stone, and H. W. Wyld: Nucl. Phys. B 225 [FS9], 93 (1983)

    Article  ADS  Google Scholar 

  46. N. Bilic and R. V. Gavai: Z. Phys. C 23, 77 (1984)

    Article  ADS  Google Scholar 

  47. E. Dagotto, A. Moreo, R. L. Sugar, and D. Toussaint: Phys. Rev. B 41, 811 (1990)

    Article  ADS  Google Scholar 

  48. A. Hasenfratz and D. Toussaint: Nucl. Phys. B 371, 539 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  49. M. G. Alford, A. Kapustin, and F. Wilczek: Phys. Rev. D 59, 054502 (1999)

    Article  ADS  Google Scholar 

  50. D. T. Son and M. A. Stephanov: Phys. Rev. Lett. 86, 592 (2001)

    Article  ADS  Google Scholar 

  51. J. Bloch and T. Wettig: Phys. Rev. Lett. 97, 012003 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  52. J. Bloch and T. Wettig: Phys. Rev. D 76, 114511 (2007)

    Article  ADS  Google Scholar 

  53. C. Gattringer and L. Liptak: Phys. Rev. D 76, 054502 (2007)

    Article  ADS  Google Scholar 

  54. D. Banerjee, R. V. Gavai, and S. Sharma: Phys. Rev. D 78, 014506 (2008)

    Article  ADS  Google Scholar 

  55. K. Rajagopal and F. Wilczek: in At the Frontiers of Physics / Handbook of QCD, edited by M. Shifman, Vol. 3, p.2061 (World Scientific, Singapore 2001)

    Google Scholar 

  56. M. Alford: Ann. Rev. Nucl. Part. Sci. 51, 131 (2001)

    Article  ADS  Google Scholar 

  57. M. G. Alford, K. Rajagopal, and F. Wilczek: Phys. Lett. B 422, 247 (1998)

    Article  ADS  Google Scholar 

  58. R. Rapp, T. Schäfer, E. V. Shuryak, and M. Velkovsky: Phys. Rev. Lett. 81, 53 (1998)

    Article  ADS  Google Scholar 

  59. M. A. Halasz et al.: Phys. Rev. D 58, 096007 (1998)

    Article  ADS  Google Scholar 

  60. B. Klein, D. Toublan, and J. J. M. Verbaarschot: Phys. Rev. D 68, 014009 (2003)

    Article  ADS  Google Scholar 

  61. M. G. Alford, K. Rajagopal, and F. Wilczek: Nucl. Phys. B 537, 443 (1999)

    Article  ADS  Google Scholar 

  62. I. M. Barbour et al.: Nucl. Phys. B 275, 286 (1986)

    Article  ADS  Google Scholar 

  63. J. B. Kogut, M.-P. Lombardo, and D. Sinclair: Phys. Rev. D 51, 1282 (1995)

    Article  ADS  Google Scholar 

  64. I. M. Barbour et al.: Nucl. Phys. (Proc. Suppl.) 60A, 220 (1998)

    Article  ADS  Google Scholar 

  65. M. A. Stephanov: Phys. Rev. Lett. 76, 4472 (1996)

    Article  ADS  Google Scholar 

  66. P. Ginsparg: Nucl. Phys. B 170, 388 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  67. T. Appelquist and R. D. Pisarski: Phys. Rev. D 23, 2305 (1981)

    Article  ADS  Google Scholar 

  68. K. Kajantie et al.: Phys. Rev. Lett. 79, 3130 (1997)

    Article  ADS  Google Scholar 

  69. A. Hart, M. Laine, and O. Philipsen: Nucl. Phys. B 586, 443 (2000)

    Article  ADS  Google Scholar 

  70. A. Hart, M. Laine, and O. Philipsen: Phys. Lett. B 505, 141 (2001)

    Article  ADS  MATH  Google Scholar 

  71. K. Kajantie, M. Laine, K. Rummukainen, and Y. Schröder: JHEP 04, 036 (2003)

    Article  ADS  Google Scholar 

  72. A. M. Ferrenberg and R. H. Swendsen: Phys. Rev. Lett. 63, 1195 (1989)

    Article  ADS  Google Scholar 

  73. A. M. Ferrenberg and R. H. Swendsen: Phys. Rev. Lett. 63, 1658 (1989)

    Article  ADS  Google Scholar 

  74. Z. Fodor and S. D. Katz: Phys. Lett. B 534, 87 (2002)

    Article  ADS  MATH  Google Scholar 

  75. Z. Fodor and S. D. Katz: JHEP 0203, 014 (2002)

    Article  ADS  Google Scholar 

  76. Z. Fodor and S. D. Katz: JHEP 0404, 050 (2004)

    Article  ADS  Google Scholar 

  77. S. Ejiri: Phys. Rev. D 73, 054502 (2006)

    Article  ADS  Google Scholar 

  78. P. de Forcrand and S. Kratochvila: Nucl. Phys. (Proc. Suppl.) 153, 62 (2006)

    Article  ADS  Google Scholar 

  79. P. de Forcrand and O. Philipsen: JHEP 0701, 077 (2007)

    Article  Google Scholar 

  80. S. Gottlieb et al.: Phys. Rev. D 38, 2888 (1988)

    Article  ADS  Google Scholar 

  81. S. Choe et al.: Phys. Rev. D 65, 054501 (2002)

    Article  ADS  Google Scholar 

  82. R. V. Gavai and S. Gupta: Phys. Rev. D 68, 034506 (2003)

    Article  ADS  Google Scholar 

  83. C. R. Allton et al.: Phys. Rev. D 71, 054508 (2005)

    Article  ADS  Google Scholar 

  84. C. R. Allton et al.: Phys. Rev. D 68, 014507 (2003)

    Article  ADS  Google Scholar 

  85. R. V. Gavai and S. Gupta: Phys. Rev. D 71, 114014 (2005)

    Article  ADS  Google Scholar 

  86. C. R. Allton et al.: Phys. Rev. D 66, 074507 (2002)

    Article  ADS  Google Scholar 

  87. A. Roberge and N. Weiss: Nucl. Phys. B 275, 734 (1986)

    Article  ADS  Google Scholar 

  88. P. de Forcrand and O. Philipsen: Nucl. Phys. B 642, 290 (2002)

    Article  ADS  MATH  Google Scholar 

  89. M. D’Elia and M. P. Lombardo: Phys. Rev. D 67, 014505 (2003)

    Article  ADS  Google Scholar 

  90. M. P. Lombardo: Nucl. Phys. B (Proc. Suppl.) 83, 375 (2000)

    ADS  Google Scholar 

  91. P. de Forcrand and O. Philipsen: Nucl. Phys. B 673, 170 (2003)

    Article  ADS  Google Scholar 

  92. M. D’Elia and M. P. Lombardo: Phys. Rev. D 70, 074509 (2004)

    Article  ADS  Google Scholar 

  93. M. P. Lombardo: PoS LAT2005, 168 (2005)

    Google Scholar 

  94. V. Azcoiti, G. D. Carlo, A. Galante, and V. Laliena: JHEP 0412, 010 (2004)

    Article  ADS  Google Scholar 

  95. V. Azcoiti, G. D. Carlo, A. Galante, and V. Laliena: Nucl. Phys. B 723, 77 (2005)

    Article  ADS  Google Scholar 

  96. S. Kratochvila and P. de Forcrand: Nucl. Phys. B (Proc. Suppl.) 140, 514 (2005)

    Article  ADS  Google Scholar 

  97. S. Kratochvila and P. de Forcrand: PoS LAT2005, 167 (2005)

    Google Scholar 

  98. A. Alexandru, M. Faber, I. Horváth, and K. F. Liu: Phys. Rev. D 72, 114513 (2005)

    Article  ADS  Google Scholar 

  99. A. Li, A. Alexandru, and K.-F. Liu: PoS LAT2006, 030 (2006)

    Google Scholar 

  100. A. Alexandru, A. Li, and K.-F. Liu: PoS LATTICE2007, 167 (2007)

    Google Scholar 

  101. A. Li, A. Alexandru, and K.-F. Liu: PoS LATTICE2007, 203 (2007)

    Google Scholar 

  102. J. Danzer and C. Gattringer: Phys. Rev. D 78, 114508 (2008)

    Article  ADS  Google Scholar 

  103. X. Meng, A. Li, A. Alexandru, and K.-F. Liu: PoS LATTICE2008, 032 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christof Gattringer .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gattringer, C., Lang, C.B. (2010). Temperature and chemical potential. In: Quantum Chromodynamics on the Lattice. Lecture Notes in Physics, vol 788. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01850-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01850-3_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01849-7

  • Online ISBN: 978-3-642-01850-3

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics