Skip to main content

Listeria as an Enteroinvasive Gastrointestinal Pathogen

  • Chapter
  • First Online:
Molecular Mechanisms of Bacterial Infection via the Gut

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 337))

Abstract

The bacterium Listeria monocytogenes is the causative agent of listeriosis, a highly fatal opportunistic foodborne infection. Listeria spp. are isolated from a diversity of environmental sources, including soil, water, effluents, a large variety of foods, and the feces of humans and animals. Recent outbreaks demonstrated that L. monocytogenes can cause gastroenteritis in otherwise healthy individuals and more severe invasive disease in immunocompromised patients. Common symptoms include fever, watery diarrhea, nausea, headache, and pains in joints and muscles. The intestinal tract is the major portal of entry for L. monocytogenes, whereby strains penetrate the mucosal tissue either directly, via invasion of enterocytes, or indirectly, via active penetration of the Peyer's patches. Studies have revealed the strategy taken by the bacteria to overcome changes in oxygen tension, osmolarity, acidity, and the sterilizing effects of bile or antimicrobial peptides to adapt to conditions in the gut. In addition, L. monocytogenes has evolved species-specific strategies for intestinal entry by exploiting the interaction between the internalin protein and its receptor E-cadherin, or inducing diarrhea and an inflammatory response via the activity of its hemolytic toxin, listeriolysin. The ability of these bacteria to survive in bile-rich environments, and to induce depletion of sentinel cells such as Paneth cells that monitor the luminal burden of commensal bacteria, suggest strategies that have evolved to promote intestinal survival. Preexisting gastrointestinal disease may be a risk factor for infection of the gastrointestinal tract with L. monocytogenes. Currently, there is enough evidence to warrant consideration of L. monocytogenes as a possible etiology in outbreaks of febrile gastroenteritis, and for further studies to examine the genetic structure of Listeria strains that have a propensity to cause gastrointestinal versus systemic infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams GD, Bishop JE (1967) Effect of the normal microbial flora on gastrointestinal motility. Proc Soc Exp Biol Med 126:301–304

    CAS  PubMed  Google Scholar 

  • Allerberger F, Langer B, Hirsch O et al (1989) Listeria monocytogenes cholecystitis. Z Gastroenterol 27:145–147

    CAS  PubMed  Google Scholar 

  • Aureli P, Fiorucci GC, Caroli D et al (2000) An outbreak of febrile gastroenteritis associated with corn contaminated by Listeria monocytogenes. N Engl J Med 342:1236–1241

    Article  CAS  PubMed  Google Scholar 

  • Bakardjiev AI, Stacy BA, Portnoy DA (2005) Growth of Listeria monocytogenes in the guinea pig placenta and role of cell-to-cell spread in fetal infection. J Infect Dis 191:1889–1897

    Article  PubMed  Google Scholar 

  • Barbuddhe SB, Malik SV, Gupta LK (2000) Kinetics of antibody production and clinical profiles of calves experimentally infected with Listeria monocytogenes. J Vet Med B Infect Dis Vet Public Health 47:497–502

    CAS  PubMed  Google Scholar 

  • Begley M, Gahan CG, Hill C (2002) Bile stress response in Listeria monocytogenes LO28: adaptation, cross-protection, and identification of genetic loci involved in bile resistance. Appl Environ Microbiol 68:6005–6012

    Article  CAS  PubMed  Google Scholar 

  • Begley M, Sleator RD, Gahan CG, Hill C (2005) Contribution of three bile-associated loci, bsh, pva, and btlB, to gastrointestinal persistence and bile tolerance of Listeria monocytogenes. Infect Immun 73:894–904

    Article  CAS  PubMed  Google Scholar 

  • Bigot A, Pagniez H, Botton E et al (2005) Role of FliF and FliI of Listeria monocytogenes in flagellar assembly and pathogenicity. Infect Immun 73:5530–5539

    Article  CAS  PubMed  Google Scholar 

  • Borezee E, Pellegrini E, Berche P (2000) OppA of Listeria monocytogenes, an oligopeptide-binding protein required for bacterial growth at low temperature and involved in intracellular survival. Infect Immun 68:7069–7077

    Article  CAS  PubMed  Google Scholar 

  • Briones V, Blanco MM, Marco A et al (1992) Biliary excretion as possible origin of Listeria monocytogenes in fecal carriers. Am J Vet Res 53:191–193

    CAS  PubMed  Google Scholar 

  • Cadwell K, Liu JY, Brown SL et al (2008) A key role for autophagy and the autophagy gene Atg16l1 in mouse and human intestinal Paneth cells. Nature 456:259–263

    Article  CAS  PubMed  Google Scholar 

  • Carrique-Mas JJ, Hokeberg I, Andersson Y et al (2003) Febrile gastroenteritis after eating on-farm manufactured fresh cheese – an outbreak of listeriosis? Epidemiol Infect 130:79–86

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee SS, Hossain H, Otten S et al (2006) Intracellular gene expression profile of Listeria monocytogenes. Infect Immun 74:1323–1338

    Article  CAS  PubMed  Google Scholar 

  • Chaudhari SP, Malik SV, Rekha GB, Barbuddhe SB (2001) Detection of anti-listeriolysin O and Listeria monocytogenes in experimentally infected buffaloes (Bubalus bubalis). Trop Anim Health Prod 33:285–293

    Article  CAS  PubMed  Google Scholar 

  • Chowdhury R, Sahu G, Das J (1996) Stress response in pathogenic bacteria. J Biosci 21:149–160

    Article  CAS  Google Scholar 

  • Christiansen JK, Larsen MH, Ingmer H et al (2004) The RNA-binding protein Hfq of Listeria monocytogenes: role in stress tolerance and virulence. J Bacteriol 186:3355–3362

    Article  CAS  PubMed  Google Scholar 

  • Cobb CA, Curtis GD, Bansi DS et al (1996) Increased prevalence of Listeria monocytogenes in the faeces of patients receiving long-term H2-antagonists. Eur J Gastroenterol Hepatol 8:1071–1074

    Article  CAS  PubMed  Google Scholar 

  • Cone LA, Fitzmorris AO, Hirschberg JM (2001) Is Listeria monocytogenes an important pathogen for prosthetic joints? J Clin Rheumatol 7:34–37

    Article  CAS  PubMed  Google Scholar 

  • Conte MP, Petrone G, Di Biase AM et al (2000) Acid tolerance in Listeria monocytogenes influences invasiveness of enterocyte-like cells and macrophage-like cells. Microb Pathog 29:137–144

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Gahan CG, Hill C (2001) A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Mol Microbiol 40:465–475

    Article  CAS  PubMed  Google Scholar 

  • Cotter PD, Draper LA, Lawton EM et al (2008) Listeriolysin S, a novel peptide haemolysin associated with a subset of lineage I Listeria monocytogenes. PLoS Pathog 4:e1000144

    Article  PubMed  CAS  Google Scholar 

  • Czuprynski CJ, Faith NG, Steinberg H (2002) Ability of the Listeria monocytogenes strain Scott A to cause systemic infection in mice infected by the intragastric route. Appl Environ Microbiol 68:2893–2900

    Article  CAS  PubMed  Google Scholar 

  • Dalet K, Gouin E, Cenatiempo Y et al (1999) Characterisation of a new operon encoding a Zur-like protein and an associated ABC zinc permease in Listeria monocytogenes. FEMS Microbiol Lett 174:111–116

    Article  CAS  PubMed  Google Scholar 

  • Dalton CB, Austin CC, Sobel J et al (1997) An outbreak of gastroenteritis and fever due to Listeria monocytogenes in milk. N Engl J Med 336:100–105

    Article  CAS  PubMed  Google Scholar 

  • Davis MJ, Coote PJ, O'Byrne CP (1996) Acid tolerance in Listeria monocytogenes: the adaptive acid tolerance response (ATR) and growth-phase-dependent acid resistance. Microbiology 142:2975–2982

    Article  CAS  PubMed  Google Scholar 

  • Disson O, Grayo S, Huillet E et al (2008) Conjugated action of two species-specific invasion proteins for fetoplacental listeriosis. Nature 455:1114–1118

    Article  CAS  PubMed  Google Scholar 

  • Donnelly CW (2001) Listeria monocytogenes: a continuing challenge. Nutr Rev 59:183–194

    Article  CAS  PubMed  Google Scholar 

  • Dramsi S, Cossart P (1998) Intracellular pathogens and the actin cytoskeleton. Annu Rev Cell Dev Biol 14:137–166

    Article  CAS  PubMed  Google Scholar 

  • Dussurget O, Cabanes D, Dehoux P et al (2002) Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol 45:1095–1106

    Article  CAS  PubMed  Google Scholar 

  • Farber JM, Peterkin PI (1991) Listeria monocytogenes, a food-borne pathogen. Microbiol Rev 55:476–511

    CAS  PubMed  Google Scholar 

  • Farber JM, Peterkin PI, Carter AO et al (1991) Neonatal listeriosis due to cross-infection confirmed by isoenzyme typing and DNA fingerprinting. J Infect Dis 163:927–928

    CAS  PubMed  Google Scholar 

  • Ferreira A, O'Byrne CP, Boor KJ (2001) Role of sigma(B) in heat, ethanol, acid, and oxidative stress resistance and during carbon starvation in Listeria monocytogenes. Appl Environ Microbiol 67:4454–4457

    Article  CAS  PubMed  Google Scholar 

  • Ferreira A, Sue D, O'Byrne CP, Boor KJ (2003) Role of Listeria monocytogenes sigma(B) in survival of lethal acidic conditions and in the acquired acid tolerance response. Appl Environ Microbiol 69:2692–2698

    Article  CAS  PubMed  Google Scholar 

  • Foster JW, Spector MP (1995) How Salmonella survive against the odds. Annu Rev Microbiol. 49:145–174

    Article  CAS  PubMed  Google Scholar 

  • Fraser KR, Harvie D, Coote PJ, O'Byrne CP (2000) Identification and characterization of an ATP binding cassette L-carnitine transporter in Listeria monocytogenes. Appl Environ Microbiol 66:4696–4704

    Article  CAS  PubMed  Google Scholar 

  • Frye DM, Zweig R, Sturgeon J et al (2002) An outbreak of febrile gastroenteritis associated with delicatessen meat contaminated with Listeria monocytogenes. Clin Infect Dis 35:943–949

    Article  PubMed  Google Scholar 

  • Gahan CG, Hill C (2005) Gastrointestinal phase of Listeria monocytogenes infection. J Appl Microbiol 98:1345–1353

    Article  CAS  PubMed  Google Scholar 

  • Gaillard JL, Finlay BB (1996) Effect of cell polarization and differentiation on entry of Listeria monocytogenes into the enterocyte-like Caco-2 cell line. Infect Immun 64:1299–1308

    CAS  PubMed  Google Scholar 

  • Glaser P, Frangeul L, Buchrieser C et al (2001) Comparative genomics of Listeria species. Science 294:849–852

    CAS  PubMed  Google Scholar 

  • Gutierrez C, Devedjian JC (1991) Osmotic induction of gene osmC expression in Escherichia coli K12. J Mol Biol 220:959–973

    Article  CAS  PubMed  Google Scholar 

  • Hain T, Hossain H, Chatterjee SS et al (2008) Temporal transcriptomic analysis of the Listeria monocytogenes EGD-e sigmaB regulon. BMC Microbiol 28:8–20

    Google Scholar 

  • Hanawa T, Yamamoto T, Kamiya S (1995) Listeria monocytogenes can grow in macrophages without the aid of proteins induced by environmental stresses. Infect Immun 63:4595–4599

    CAS  PubMed  Google Scholar 

  • Hardy J, Francis KP, DeBoer M et al (2004) Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303:851–853

    Article  CAS  PubMed  Google Scholar 

  • Hardy J, Chu P, Contag CH (2009) Foci of Listeria monocytogenes persist in the bone marrow. Dis Model Mech 2:39–46

    Article  PubMed  Google Scholar 

  • Havell EA, Beretich GR Jr, Carter PB (1999) The mucosal phase of Listeria infection. Immunobiology 201:164–177

    CAS  PubMed  Google Scholar 

  • Ho JL, Shands KN, Friedland G et al (1986) An outbreak of type 4b Listeria monocytogenes infection involving patients from eight Boston hospitals. Arch Intern Med 146:520–524

    Article  CAS  PubMed  Google Scholar 

  • Hof H (2001) Listeria monocytogenes: a causative agent of gastroenteritis? Eur J Clin Microbiol Infect Dis 20:369–373

    Article  CAS  PubMed  Google Scholar 

  • Hugot JP, Alberti C, Berrebi D et al (2003) Crohn's disease: the cold chain hypothesis. Lancet 362:2012–2015

    Article  CAS  PubMed  Google Scholar 

  • Janot L, Secher T, Torres D et al (2008) CD14 works with toll-like receptor 2 to contribute to recognition and control of Listeria monocytogenes infection. J Infect Dis 198:115–124

    Article  CAS  PubMed  Google Scholar 

  • Jensen VB, Harty JT, Jones BD (1998) Interactions of the invasive pathogens Salmonella typhimurium, Listeria monocytogenes, and Shigella flexneri with M cells and murine Peyer's patches. Infect Immun 66:3758–3766

    CAS  PubMed  Google Scholar 

  • Karunasagar I, Senghaas B, Krohne G, Goebel W (1994) Ultrastructural study of Listeria monocytogenes entry into cultured human colonic epithelial cells. Infect Immun 62:3554–3558

    CAS  PubMed  Google Scholar 

  • Kaser A, Lee AH, Franke A et al (2008) XBP1 links ER stress to intestinal inflammation and confers genetic risk for human inflammatory bowel disease. Cell 134:743–756

    Article  CAS  PubMed  Google Scholar 

  • Kazmierczak MJ, Mithoe SC, Boor KJ, Wiedmann M (2003) Listeria monocytogenes sigma B regulates stress response and virulence functions. J Bacteriol 185:5722–5734

    Article  CAS  PubMed  Google Scholar 

  • Khelef N, Lecuit M, Bierne H, Cossart P (2006) Species specificity of the Listeria monocytogenes InlB protein. Cell Microbiol 8:457–470

    Article  CAS  PubMed  Google Scholar 

  • Kim H, Marquis H, Boor KJ (2005) SigmaB contributes to Listeria monocytogenes invasion by controlling expression of inlA and inlB. Microbiology 151:3215–3222

    Article  CAS  PubMed  Google Scholar 

  • Ko R, Smith LT (1999) Identification of an ATP-driven, osmoregulated glycine betaine transport system in Listeria monocytogenes. Appl Environ Microbiol 65:4040–4048

    CAS  PubMed  Google Scholar 

  • Kobayashi KS, Chamaillard M, Ogura Y et al (2005) Nod2-dependent regulation of innate and adaptive immunity in the intestinal tract. Science 307:731–734

    Article  CAS  PubMed  Google Scholar 

  • Lecuit M (2005) Understanding how Listeria monocytogenes targets and crosses host barriers. Clin Microbiol Infect 11:430–436

    Article  CAS  PubMed  Google Scholar 

  • Lecuit M (2007) Human listeriosis and animal models. Microbes Infect 9:1216–1225

    Article  CAS  PubMed  Google Scholar 

  • Lecuit M, Ohayon H, Braun L et al (1997) Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect Immun 65:5309–5319

    CAS  PubMed  Google Scholar 

  • Lecuit M, Dramsi S, Gottardi C et al (1999) A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J 18:3956–3963

    Article  CAS  PubMed  Google Scholar 

  • Lecuit M, Vandormael-Pournin S, Lefort J et al (2001) A transgenic model for listeriosis: role of internalin in crossing the intestinal barrier. Science 292:1722–1725

    Article  CAS  PubMed  Google Scholar 

  • Lorber B (1991) Listeriosis following shigellosis. Rev Infect Dis 13:865–866

    CAS  PubMed  Google Scholar 

  • Lou Y, Yousef AE (1997) Adaptation to sublethal environmental stresses protects Listeria monocytogenes against lethal preservation factors. Appl Environ Microbiol 63:1252–1255

    CAS  PubMed  Google Scholar 

  • Lungu B, Ricke SC, Johnson MG (2009) Growth, survival, proliferation and pathogenesis of Listeria monocytogenes under low oxygen or anaerobic conditions: a review. Anaerobe 15:7–17

    Article  CAS  PubMed  Google Scholar 

  • MacDonald TT, Carter PB (1980) Cell-mediated immunity to intestinal infection. Infect Immun 28:516–523

    CAS  PubMed  Google Scholar 

  • Machata S, Tchatalbachev S, Mohamed W et al (2008) Lipoproteins of Listeria monocytogenes are critical for virulence and TLR2-mediated immune activation. J Immunol 181:2028–2035

    CAS  PubMed  Google Scholar 

  • Machesky LM (1997) Cell motility: complex dynamics at the leading edge. Curr Biol 7:R164–R167

    Article  CAS  PubMed  Google Scholar 

  • Marco AJ, Prats N, Ramos JA et al (1992) A microbiological, histopathological and immunohistological study of the intragastric inoculation of Listeria monocytogenes in mice. J Comp Pathol 107:1–9

    Article  CAS  PubMed  Google Scholar 

  • McLauchlin J (1990) Distribution of serovars of Listeria monocytogenes isolated from different categories of patients with listeriosis. Eur J Clin Microbiol Infect Dis 9:210–213

    Article  CAS  PubMed  Google Scholar 

  • Mendum ML, Smith LT (2002) Gbu glycine betaine porter and carnitine uptake in osmotically stressed Listeria monocytogenes cells. Appl Environ Microbiol 68:5647–5655

    Article  CAS  PubMed  Google Scholar 

  • Mengaud J, Ohayon H, Gounon P, Mege R-M, Cossart P (1996) E-cadherin is the receptor for internalin, a surface protein required for entry of L. monocytogenes into epithelial cells. Cell 84:923–932

    Article  CAS  PubMed  Google Scholar 

  • Miettinen MK, Siitonen A, Heiskanen P et al (1999) Molecular epidemiology of an outbreak of febrile gastroenteritis caused by Listeria monocytogenes in cold-smoked rainbow trout. J Clin Microbiol 37:2358–2360

    CAS  PubMed  Google Scholar 

  • Nikaido H, Rosenberg EY, Foulds J (1983) Porin channels in Escherichia coli: studies with beta-lactams in intact cells. J Bacteriol 153:232–240

    CAS  PubMed  Google Scholar 

  • O'Driscoll B, Gahan CG, Hill C (1996) Adaptive acid tolerance response in Listeria monocytogenes: isolation of an acid-tolerant mutant which demonstrates increased virulence. Appl Environ Microbiol 62:1693–1698

    PubMed  Google Scholar 

  • Ogawa M, Nakagawa I, Yoshikawa Y et al (2009) Streptococcus-, Shigella-, and Listeria-induced autophagy. Methods Enzymol 452:363–381

    Article  CAS  PubMed  Google Scholar 

  • O'Neil HS, Marquis H (2006) Listeria monocytogenes flagella are used for motility, not as adhesins, to increase host cell invasion. Infect Immun 74:6675–6681

    Article  PubMed  CAS  Google Scholar 

  • Ooi ST, Lorber B (2005) Gastroenteritis due to Listeria monocytogenes. Clin Infect Dis 40:1327–1332

    Article  PubMed  Google Scholar 

  • Pinner RW, Schuchat A, Swaminathan B et al (1992) Role of foods in sporadic listeriosis. II. Microbiologic and epidemiologic investigation. The Listeria Study Group. JAMA 267:2046–2050

    Article  CAS  PubMed  Google Scholar 

  • Pron B, Boumaila C, Jaubert F et al (1998) Comprehensive study of the intestinal stage of listeriosis in a rat ligated ileal loop system. Infect Immun 66:747–755

    CAS  PubMed  Google Scholar 

  • Pron B, Boumaila C, Jaubert F et al (2001) Dendritic cells are early cellular targets of Listeria monocytogenes after intestinal delivery and are involved in bacterial spread in the host. Cell Microbiol 3:331–340

    Article  CAS  PubMed  Google Scholar 

  • Racz P, Tenner K, Mero E (1972) Experimental Listeria enteritis. I. An electron microscopic study of the epithelial phase in experimental listeria infection. Lab Invest 26:694–700

    CAS  PubMed  Google Scholar 

  • Roche SM, Gracieux P, Milohanic E et al (2005) Investigation of specific substitutions in virulence genes characterizing phenotypic groups of low-virulence field strains of Listeria monocytogenes. Appl Environ Microbiol 71:6039–6048

    Article  CAS  PubMed  Google Scholar 

  • Saitoh T, Fujita N, Jang MH et al (2008) Loss of the autophagy protein Atg16L1 enhances endotoxin-induced IL-1beta production. Nature 456:264–268

    Article  CAS  PubMed  Google Scholar 

  • Salamina G, Dalle DE, Niccolini A et al (1996) A foodborne outbreak of gastroenteritis involving Listeria monocytogenes. Epidemiol Infect 117:429–436

    Article  CAS  PubMed  Google Scholar 

  • Schlech WF III, Lavigne PM, Bortolussi RA et al (1983) Epidemic listeriosis–evidence for transmission by food. N Engl J Med 308:203–206

    Article  PubMed  Google Scholar 

  • Schlech WF III, Schlech WF, Haldane H et al (2005) Does sporadic Listeria gastroenteritis exist? A 2-year population-based survey in Nova Scotia, Canada. Clin Infect Dis 41:778–784

    Article  PubMed  Google Scholar 

  • Schubert WD, Göbel G, Diepholz M et al (2001) Internalins from the human pathogen Listeria monocytogenes combine three distinct folds into a contiguous internalin domain. J Mol Biol 312(4):783–794

    Article  CAS  PubMed  Google Scholar 

  • Schubert WD, Urbanke C, Ziehm T (2002) Structure of internalin, a major invasion protein of Listeria monocytogenes, in complex with its human receptor E-cadherin. Cell 111(6):825–836

    Article  CAS  PubMed  Google Scholar 

  • Schuchat A, Deaver KA, Wenger JD et al (1992) Role of foods in sporadic listeriosis. I. Case-control study of dietary risk factors. The Listeria Study group. JAMA 267:2041–2045

    Article  CAS  PubMed  Google Scholar 

  • Shen Y, Naujokas M, Park M, Ireton K (2000) InIB-dependent internalization of Listeria is mediated by the Met receptor tyrosine kinase. Cell 103:501–510

    Article  CAS  PubMed  Google Scholar 

  • Sim J, Hood D, Finnie L, Wilson M et al (2002) Series of incidents of Listeria monocytogenes non-invasive febrile gastroenteritis involving ready-to-eat meats. Lett Appl Microbiol 35:409–413

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Gahan CG, Abee T, Hill C (1999) Identification and disruption of BetL, a secondary glycine betaine transport system linked to the salt tolerance of Listeria monocytogenes LO28. Appl Environ Microbiol 65:2078–2083

    CAS  PubMed  Google Scholar 

  • Sleator RD, Wouters J, Gahan CG et al (2001) Analysis of the role of OpuC, an osmolyte transport system, in salt tolerance and virulence potential of Listeria monocytogenes. Appl Environ Microbiol 67:2692–2698

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Wemekamp-Kamphuis HH, Gahan CG et al (2005) A PrfA-regulated bile exclusion system (BilE) is a novel virulence factor in Listeria monocytogenes. Mol Microbiol 55:1183–1195

    Article  CAS  PubMed  Google Scholar 

  • Sleator RD, Clifford T, Hill C (2007) Gut osmolarity: a key environmental cue initiating the gastrointestinal phase of Listeria monocytogenes infection? Med Hypotheses 69:1090–1092

    Article  CAS  PubMed  Google Scholar 

  • Stack HM, Sleator RD, Bowers M et al (2005) Role for HtrA in stress induction and virulence potential in Listeria monocytogenes. Appl Environ Microbiol 71:4241–4247

    Article  CAS  PubMed  Google Scholar 

  • Tabib W, Guiffault P, Lemort CB, Berrada H (2002) Prosthetic hip joint infection caused by Listeria monocytogenes. Acta Orthop Belg 68:182–186

    CAS  PubMed  Google Scholar 

  • Till A, Rosenstiel P, Bräutigam K (2008) A role for membrane-bound CD147 in NOD2-mediated recognition of bacterial cytoinvasion. J Cell Sci 121:487–495

    Article  CAS  PubMed  Google Scholar 

  • Vazquez-Boland JA, Kuhn M, Berche P et al (2001a) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640

    Article  Google Scholar 

  • Vazquez-Boland JA, Dominguez-Bernal G, Gonzalez-Zorn B et al (2001b) Pathogenicity islands and virulence evolution in Listeria. Microbes Infect 3:571–584

    Article  Google Scholar 

  • Wemekamp-Kamphuis HH, Wouters JA et al (2002) Multiple deletions of the osmolyte transporters BetL, Gbu, and OpuC of Listeria monocytogenes affect virulence and growth at high osmolarity. Appl Environ Microbiol 68:4710–4716

    Article  CAS  PubMed  Google Scholar 

  • Wemekamp-Kamphuis HH, Sleator RD et al (2004) Molecular and physiological analysis of the role of osmolyte transporters BetL, Gbu, and OpuC in growth of Listeria monocytogenes at low temperatures. Appl Environ Microbiol 70:2912–2918

    Article  CAS  PubMed  Google Scholar 

  • Wollert T, Pasche B, Rochon M et al (2007) Extending the host range of Listeria monocytogenes by rational protein design. Cell 129:891–902

    Article  CAS  PubMed  Google Scholar 

  • Wonderling LD, Wilkinson BJ, Bayles DO (2004) The htrA (degP) gene of Listeria monocytogenes 10403S is essential for optimal growth under stress conditions. Appl Environ Microbiol 70:1935–1943

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Kurata S (2009) An unexpected twist for autophagy in Crohn's disease. Nat Immunol 10:134–136

    Article  CAS  PubMed  Google Scholar 

  • Zachar Z, Savage DC (1979) Microbial interference and colonization of the murine gastrointestinal tract by Listeria monocytogenes. Infect Immun 23:168–174

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jangam Ashok Kumar for the illustrations and Dr. Deepak Rawool for reading the manuscript. The work of the authors was supported by funds made available through the German Ministry of Education and Research (BMBF) and the Department of Biotechnology (DBT), the Government of India through the InGeLis project and NGFN-2 to S.B.B. and T.C.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Trinad Chakraborty .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Barbuddhe, S.B., Chakraborty, T. (2009). Listeria as an Enteroinvasive Gastrointestinal Pathogen. In: Sasakawa, C. (eds) Molecular Mechanisms of Bacterial Infection via the Gut. Current Topics in Microbiology and Immunology, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01846-6_6

Download citation

Publish with us

Policies and ethics