Skip to main content

Interaction of Yersinia with the Gut: Mechanisms of Pathogenesis and Immune Evasion

  • Chapter
  • First Online:
Molecular Mechanisms of Bacterial Infection via the Gut

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 337))

Abstract

Yersinia entercolitica and Yersinia pseudotuberculosis are human foodborne pathogens that interact extensively with tissues of the gut and the host’s immune system to cause disease. As part of their pathogenic strategies, the Yersinia have evolved numerous ways to invade host tissues, gain essential nutrients, and evade host immunity. Technological advances over the last 10 years have revolutionized our understanding of host–pathogen interactions. The application of these new technologies has also shown that even well-understood pathogens such as the Yersinia have many surprises waiting to be revealed. The complex interaction with the host has made Yersinia a paradigm for understanding bacterial pathogenesis and the host response to invasive bacterial infections. This review examines the mechanisms of immune evasion employed by the Yersinia and highlights recent advances in understanding the host–pathogen interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Haq NM, Asmar BI, Abuhammour WM, Brown WJ (2000) Yersinia enterocolitica infection in children. Pediatr Infect Dis J 19:954–958

    CAS  PubMed  Google Scholar 

  • Abraham SN, Malaviya R (2000) Mast cell modulation of the innate immune response to enterobacterial infection. Adv Exp Med Biol 479:91–105

    CAS  PubMed  Google Scholar 

  • Adkins I, Koberle M, Grobner S, Autenrieth SE, Bohn E, Borgmann S, Autenrieth IB (2008) Y. enterocolitica inhibits antigen degradation in dendritic cells. Microbes Infect 10:798–806

    CAS  PubMed  Google Scholar 

  • Aepfelbacher M (2004) Modulation of Rho GTPases by type III secretion system translocated effectors of Yersinia. Rev Physiol Biochem Pharmacol 152:65–77

    CAS  PubMed  Google Scholar 

  • Akira S, Takeda K (2004) Toll-like receptor signaling. Nat Rev Immunol 4:499–511

    CAS  PubMed  Google Scholar 

  • Alonso A, Bottini N, Bruckner S, Rahmouni S, Williams S, Schoenberger SP, Mustelin T (2004) Lck dephosphorylation at Tyr-394 and inhibition of T cell antigen receptor signaling by Yersinia phosphatase YopH. J Biol Chem 279:4922–4928

    CAS  PubMed  Google Scholar 

  • Autenrieth IB, Firsching R (1996) Penetration of M cells and destruction of Peyer's Patches by Yersinia enterocolitica: an ultrastructural and histological study. J Med Microbiol 44:285–294

    CAS  PubMed  Google Scholar 

  • Autenrieth IB, Heesemann J (1992) In vivo neutralization of tumor necrosis factor-alpha and interferon-gamma abrogates resistance to Yersinia enterocolitica infection in mice. Med Microbiol Immunol 181:333–338

    CAS  PubMed  Google Scholar 

  • Autenrieth IB, Tingle A, Reske-Kunz A, Heesemann J (1992) T lymphocytes mediate protection against Yersinia enterocolitica in mice: characterization of murine T-cell clones specific for Y. enterocolitica. Infect Immun 60:1140–1149

    CAS  PubMed  Google Scholar 

  • Autenrieth IB, Hantschmann P, Heymer B, Heesemann J (1993a) Immunohistological characterization of the cellular immune response against Yersinia enterocolitica in mice: evidence for the involvement of T lymphocytes. Immunobiology 187:1–16

    CAS  PubMed  Google Scholar 

  • Autenrieth IB, Vogel U, Preger S, Heymer B, Heesemann J (1993b) Experimental Yersinia enterocolitica infection in euthymic and T-cell-deficient athymic nude C57BL/6 mice: comparison of time course, histomorphology, and immune response. Infect Immun 61:2585–2595

    CAS  PubMed  Google Scholar 

  • Autenrieth IB, Beer M, Bohn E, Kaufmann SHE, Heesemann J (1994) Immune responses to Yersinia enterocolitica in susceptible BALB/c and resistant C57BL/6 mice: an essential role for gamma interferon. Infect Immun 62:2590–2599

    CAS  PubMed  Google Scholar 

  • Autenrieth IB, Kempf V, Sprinz T, Preger S, Schnell A (1996) Defense mechanisms in Peyer's patches and mesenteric lymph nodes against Yersinia enterocolitica involve integrins and cytokines. Infect Immun 64:1357–1368

    CAS  PubMed  Google Scholar 

  • Awasthi A, Murugaiyan G, Kuchroo VK (2008) Interplay between effector th17 and regulatory T cells. J Clin Immunol 28:660–670

    CAS  PubMed  Google Scholar 

  • Balligand G, Laroche Y, Cornelis G (1985) Genetic analysis of virulence plasmid from a serotype 9 Yersinia enterocolitica strain: role of outer membrane protein P1 in resistance to human serum and autoagglutination. Infect Immun 48:782–786

    Google Scholar 

  • Barnes PD, Bergman MA, Mecsas J, Isberg RR (2006) Yersinia pseudotuberculosis disseminates directly from a replicating bacterial pool in the intestine. J Exp Med 203:1591–1601

    CAS  PubMed  Google Scholar 

  • Barton ES, White DW, Cathelyn JS, Brett-McClellan KA, Engle M, Diamond MS, Miller VL, HWt V (2007) Herpesvirus latency confers symbiotic protection from bacterial infection. Nature 447:326–329

    CAS  PubMed  Google Scholar 

  • Bergsbaken T, Cookson BT (2007) Macrophage activation redirects yersinia-infected host cell death from apoptosis to caspase-1-dependent pyroptosis. PLoS Pathog 3:e161

    PubMed  Google Scholar 

  • Beuscher HU, Rausch U-P, Otterness IG, Röllinghoff M (1992) Transition from interleukin 1β (IL-1β) to IL-1α production during maturation of inflammatory macrophages in vivo. J Exp Med 175:1793–1797

    CAS  PubMed  Google Scholar 

  • Biedzka-Sarek M, Venho R, Skurnik M (2005) Role of yada, ail, and lipopolysaccharide in serum resistance of yersinia enterocolitica serotype o:3. Infect Immun 73:2232–2244

    CAS  PubMed  Google Scholar 

  • Biedzka-Sarek M, Jarva H, Hyytiainen H, Meri S, Skurnik M (2008a) Characterization of complement factor H binding to Yersinia enterocolitica serotype O:3. Infect Immun 76:4100–4109

    CAS  PubMed  Google Scholar 

  • Biedzka-Sarek M, Salmenlinna S, Gruber M, Lupas AN, Meri S, Skurnik M (2008b) Functional mapping of YadA- and Ail-mediated binding of human factor H to Yersinia enterocolitica serotype O:3. Infect Immun 76:5016–5027

    CAS  PubMed  Google Scholar 

  • Black DS, Bliska JB (1997) Identification of p130Cas as a substrate of Yersinia YopH (Yop51), a bacterial protein tyrosine phosphatase that translocates into mammalian cells and targets focal adhesions. EMBO J 16:2730–2744

    CAS  PubMed  Google Scholar 

  • Black DS, Bliska JB (2000) The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol Microbiol 37:515–527

    CAS  PubMed  Google Scholar 

  • Bliska J, Falkow S (1992) Bacterial resistance to complement killing mediated by the Ail protein of Yersinia enterocolitica. Proc Natl Acad Sci USA 89:3561–3565

    CAS  PubMed  Google Scholar 

  • Bliska JB, Guan K, Dixon JE, Falkow S (1991) A mechanism of bacterial pathogenesis: tyrosine phosphate hydrolysis of host proteins by an essential Yersinia virulence determinant. Proc Natl Acad Sci USA 88:1187–1191

    CAS  PubMed  Google Scholar 

  • Bliska JB, Compass MC, Falkow S (1993) The Yersinia pseudotuberculosis adhesin YadA mediates intimate bacterial attachment to and entry into HEp-2 cells. Infect Immun 61:3914–3921

    CAS  PubMed  Google Scholar 

  • Bohn E, Sing A, Zumbihl R, Bielfeldt C, Okamura H, Kurimoto M, Heesemann J, Autenrieth IB (1998) IL-18 (IFN-gamma-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. J Immunol 160:299–307

    CAS  PubMed  Google Scholar 

  • Bolin I, Wolf-Watz H (1984) Molecular cloning of the temperature-inducible outer membrane protein 1 of Yersinia pseudotuberculosis. Infect Immun 43:72–78

    CAS  PubMed  Google Scholar 

  • Bottone EJ (1997) Yersinia enterocolitica: the charisma continues. Clin Microbiol Rev 10: 257–276

    CAS  PubMed  Google Scholar 

  • Brenner DJ, Steigerwalt AG, Falxo DP, Weaver RE, Fanning GR (1976) Characterization of Yersinia enterocolitica and Yersinia pseudotuberculosis by deoxyribonucleic acid hybridization and by biochemical reactions. Int J Syst Bacteriol 26:180–194

    Google Scholar 

  • Brodsky IE, Medzhitov R (2008) Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. PLoS Pathog 4:e1000067

    PubMed  Google Scholar 

  • Buchmeier N, Bossie S, Chen C, Fang FC, Guiney DG, Libby SJ (1997) slyA, a transcriptional regulator of Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infect Immun 65:3725–3730

    CAS  PubMed  Google Scholar 

  • Caplan LM, Dobson ML, Dorkin H (1978) Yersinia enterocolitica septicemia. Am J Clin Pathol 69:189–192

    CAS  PubMed  Google Scholar 

  • Carniel E (2001) The Yersinia high-pathogenicity island: an iron-uptake island. Microbes Infect 3:561–569

    CAS  PubMed  Google Scholar 

  • Carniel E, Guilvout I, Prentice M (1996) Characterization of a large chromosomal “high pathogenicity island” in biotype 1B Yersinia enterocolitica. J Bacteriol 178:6743–6751

    CAS  PubMed  Google Scholar 

  • Carter PB (1975a) Oral Yersinia enterocolitica infection of mice. Am J Pathol 81:703–705

    CAS  PubMed  Google Scholar 

  • Carter P (1975b) Pathogenicity of Yersinia enterocolitica for mice. Infect Immun 11:164–170

    CAS  PubMed  Google Scholar 

  • Cathelyn JS, Crosby SD, Lathem WW, Goldman WE, Miller VL (2006) RovA, a global regulator of Yersinia pestis, specifically required for bubonic plague. Proc Natl Acad Sci USA 103:13514–13519

    CAS  PubMed  Google Scholar 

  • Cathelyn JS, Ellison DW, Hinchliffe SJ, Wren BW, Miller VL (2007) The RovA regulons of Yersinia enterocolitica and Yersinia pestis are distinct: evidence that many RovA-regulated genes were acquired more recently than the core genome. Mol Microbiol 66:189–205

    CAS  PubMed  Google Scholar 

  • Chiu HY, Flynn DM, Hoffbrand AV (1986) Infection with Yersinia enterocolitica in patients with iron overload. Br Med J 292:97

    CAS  Google Scholar 

  • Cornelis GR (2002) Yersinia type III secretion: send in the effectors. J Cell Biol 158:401–408

    CAS  PubMed  Google Scholar 

  • Cornelis GR, Wolf-Watz H (1997) The Yersinia Yop virulon: a bacterial system for subverting eukaryotic cells. Mol Microbiol 23:861–867

    CAS  PubMed  Google Scholar 

  • Darwin AJ (2005) Genome-wide screens to identify genes of human pathogenic Yersinia species that are expressed during host infection. Curr Issues Mol Biol 7:135–149

    CAS  PubMed  Google Scholar 

  • Darwin A, Miller V (1999) Identification of Yersinia enterocolitica genes affecting survival in an animal host using signature-tagged transposon mutagenesis. Mol Microbiol 32:51–62

    CAS  PubMed  Google Scholar 

  • Dersch P, Isberg RR (2000) An immunoglobulin superfamily-like domain unique to the Yersinia pseudotuberculosis invasin protein is required for stimulation of bacterial uptake via integrin receptors. Infect Immun 68:2930–2938

    CAS  PubMed  Google Scholar 

  • Diehl S, Anguita J, Hoffmeyer A, Zapton T, Ihle JN, Fikrig E, Rincon M (2000) Inhibition of Th1 differentiation by IL-6 Is mediated by SOCS1. Immunity 13:805–815

    CAS  PubMed  Google Scholar 

  • Dinarello C (1997) Proinflammatory and anti-inflammatory cytokines as mediators in the pathogenesis of septic shock. Chest 112:321s–329s

    CAS  PubMed  Google Scholar 

  • Dinarello C (1998) Interleukin-1. Cytokine Growth Factor Rev 8:253–265

    Google Scholar 

  • Dube PH, Revell PA, Chaplin DD, Lorenz RG, Miller VL (2001) A role for IL-1 alpha in inducing pathologic inflammation during bacterial infection. Proc Natl Acad Sci USA 98:10880–10885

    CAS  PubMed  Google Scholar 

  • Dube PH, Handley SA, Revell PA, Miller VL (2003) The rovA mutant of Yersinia enterocolitica displays differential degrees of virulence depending on the route of infection. Infect Immun 71:3512–3520

    CAS  PubMed  Google Scholar 

  • Dube PH, Handley SA, Lewis J, Miller VL (2004) Protective role of interleukin-6 during Yersinia enterocolitica infection is mediated through the modulation of inflammatory cytokines. Infect Immun 72:3561–3570

    CAS  PubMed  Google Scholar 

  • Eitel J, Heise T, Thiesen U, Dersch P (2005) Cell invasion and IL-8 production pathways initiated by YadA of Yersinia pseudotuberculosis require common signalling molecules (FAK, c-Src, Ras) and distinct cell factors. Cell Microbiol 7:63–77

    CAS  PubMed  Google Scholar 

  • El Tahir Y, Skurnik M (2001) YadA, the multifaceted Yersinia adhesin. Int J Med Microbiol 291:209–218

    CAS  PubMed  Google Scholar 

  • Ellison DW, Miller VL (2006a) H-NS represses inv transcription in Yersinia enterocolitica through competition with RovA and interaction with YmoA. J Bacteriol 188:5101–5112

    CAS  PubMed  Google Scholar 

  • Ellison DW, Miller VL (2006b) Regulation of virulence by members of the MarR/SlyA family. Curr Opin Microbiol 9:153–159

    CAS  PubMed  Google Scholar 

  • Ellison DW, Young B, Nelson K, Miller VL (2003) YmoA negatively regulates expression of invasin from Yersinia enterocolitica. J Bacteriol 185:7153–7159

    CAS  PubMed  Google Scholar 

  • Ellison DW, Lawrenz MB, Miller VL (2004) Invasin and beyond: regulation of Yersinia virulence by RovA. Trends Microbiol 12:296–300

    CAS  PubMed  Google Scholar 

  • Finkelstein RA, Sciortino CV, McIntosh MA (1983) Role of iron in microbe-host interactions. Rev Infect Dis 5(Suppl 4):S759–S777

    PubMed  Google Scholar 

  • Foultier B, Troisfontaines P, Muller S, Opperdoes FR, Cornelis GR (2002) Characterization of the ysa pathogenicity locus in the chromosome of Yersinia enterocolitica and phylogenyanalysis of Type III secretion systems. J Mol Evol 55:37–51

    CAS  PubMed  Google Scholar 

  • Gort AS, Miller VL (2000) Identification and characterization of Yersinia enterocolitica genes induced during systemic infection. Infect Immun 68:6633–6642

    CAS  PubMed  Google Scholar 

  • Gurcel L, Abrami L, Girardin S, Tschopp J, van der Goot FG (2006) Caspase-1 activation of lipid metabolic pathways in response to bacterial pore-forming toxins promotes cell survival. Cell 126:1135–1145

    CAS  PubMed  Google Scholar 

  • Haeney MR (1998) The role of the complement cascade in sepsis. J Antimicrob Chemother 41(Suppl A):41–46

    CAS  PubMed  Google Scholar 

  • Haller JC, Carlson S, Pederson KJ, Pierson DE (2000) A chromosomally encoded type III secretion pathway in Yersinia enterocolitica is important in virulence. Mol Microbiol 36:1436–1446

    CAS  PubMed  Google Scholar 

  • Hamburger ZA, Brown MS, Isberg RR, Bjorkman PJ (1999) Crystal structure of invasin: a bacterial integrin-binding protein. Science 286:291–295

    CAS  PubMed  Google Scholar 

  • Han YW, Miller VL (1997) Reevaluation of the virulence phenotype of the inv yadA double mutants of Yersinia pseudotuberculosis. Infect Immun 65:327–330

    CAS  PubMed  Google Scholar 

  • Handley SA, Dube PH, Revell PA, Miller VL (2004) Characterization of oral Yersinia enterocolitica infection in three different strains of inbred mice. Infect Immun 72:1645–1656

    CAS  PubMed  Google Scholar 

  • Handley SA, Newberry RD, Miller VL (2005) Yersinia enterocolitica invasin-dependent and invasin-independent mechanisms of systemic dissemination. Infect Immun 73:8453–8455

    CAS  PubMed  Google Scholar 

  • Handley SA, Dube P, Miller VL (2006) Histamine signaling through the H2 receptor in the Peyer's Patch is important for controlling Yersinia enterocolitica infection. Proc Natl Acad Sci USA 103:9268–9273

    CAS  PubMed  Google Scholar 

  • Hansen-Wester I, Hensel M (2001) Salmonella pathogenicity islands encoding type III secretion systems. Microbes Infect 3:549–559

    CAS  PubMed  Google Scholar 

  • Hein J, Sing A, Di Genaro MS, Autenrieth IB (2001) Interleukin-12 and interleukin-18 are indespensible for protective immunity against enteropathogenic Yersinia. Microb Pathog 4:195–199

    Google Scholar 

  • Heise T, Dersch P (2006) Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake. Proc Natl Acad Sci USA 103:3375–3380

    CAS  PubMed  Google Scholar 

  • Heroven AK, Dersch P (2006) RovM, a novel LysR-type regulator of the virulence activator gene rovA, controls cell invasion, virulence and motility of Yersinia pseudotuberculosis. Mol Microbiol 62:1469–1483

    CAS  PubMed  Google Scholar 

  • Heroven AK, Bohme K, Rohde M, Dersch P (2008) A Csr-type regulatory system, including small non-coding RNAs, regulates the global virulence regulator RovA of Yersinia pseudotuberculosis through RovM. Mol Microbiol 68:1179–1195

    CAS  PubMed  Google Scholar 

  • Hoiczyk E, Roggenkamp A, Reichenbecher M, Lupas A, Heesemann J (2000) Structure and sequence analysis of Yersinia YadA and Moraxella UspAs reveal a novel class of adhesins. EMBO J 19:5989–5999

    CAS  PubMed  Google Scholar 

  • Hundsberger H, Verin A, Wiesner C, Pfluger M, Dulebo A, Schutt W, Lasters I, Mannel DN, Wendel A, Lucas R (2008) TNF: a moonlighting protein at the interface between cancer and infection. Front Biosci 13:5374–5386

    CAS  PubMed  Google Scholar 

  • Isberg RR, Barnes P (2001) Subversion of integrins by enteropathogenic Yersinia. J Cell Sci 114:21–28

    CAS  PubMed  Google Scholar 

  • Isberg RR, Falkow S (1985) A single genetic locus encoded by Yersinia pseudotuberculosis permits invasion of cultured animal cells by Escherichia coli K-12. Nature 317:262–264

    CAS  PubMed  Google Scholar 

  • Isberg RR, Leong JM (1990) Multiple β1 chain integrins are receptors for invasin, a protein that promotes bacterial penetration into mammalian cells. Cell 60:861–871

    CAS  PubMed  Google Scholar 

  • Jang MH, Kweon MN, Iwatani K, Yamamoto M, Terahara K, Sasakawa C, Suzuki T, Nochi T, Yokota Y, Rennert PD et al (2004) Intestinal villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A 101:6110–6115

    CAS  PubMed  Google Scholar 

  • Jutel M, Blaser K, Akdis CA (2005) Histamine in allergic inflammation and immune modulation. Int Arch Allergy Immunol 137:82–92

    CAS  PubMed  Google Scholar 

  • Kampik D, Schulte R, Autenrieth IB (2000) Yersinia enterocolitica Invasin protein triggers differential production of interleukin-1, interleukin-8, monocyte chemoattractant protein 1, granulocyte-macrophage colony stimulating factor, and tumor necrosis factor alpha in epithelial cells: Implications for understanding the early cytokine networks in Yersinia infections. Infect Immun 68:2484–2492

    CAS  PubMed  Google Scholar 

  • Karin M, Lawrence T, Nizet V (2006) Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell 124:823–835

    CAS  PubMed  Google Scholar 

  • Keller M, Ruegg A, Werner S, Beer HD (2008) Active caspase-1 is a regulator of unconventional protein secretion. Cell 132:818–831

    CAS  PubMed  Google Scholar 

  • Kim TJ, Young BM, Young GM (2008) Effect of flagellar mutations on Yersinia enterocolitica biofilm formation. Appl Environ Microbiol 74:5466–5474

    CAS  PubMed  Google Scholar 

  • Kirjavainen V, Jarva H, Biedzka-Sarek M, Blom AM, Skurnik M, Meri S (2008) Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein. PLoS Pathog 4:e1000140

    PubMed  Google Scholar 

  • Kishimoto T (1987) The biology of interleukin-6. Blood 74:1–10

    Google Scholar 

  • Koj A (1985) The acute phase response to injury and infection. In: Gordon AH, Koj A (eds) The acute phase response to injury and infection. Elsevier, Amsterdam, pp 139–144

    Google Scholar 

  • Lahesmaa R, Skurnik M, Granfors K, Mottonen T, Saario R, Toivanen A, Toivanen P (1992) Molecular mimicry in the pathogenesis of spondyloarthropathies. A critical appraisal of cross-reactivity between microbial antigens and HLA-B27. Br J Rheumatol 31:221–229

    CAS  PubMed  Google Scholar 

  • Lahesmaa R, Skurnik M, Toivanen P (1993) Molecular mimicry: any role in the pathogenesis of spondyloarthropathies? Immunol Res 12:193–208

    CAS  PubMed  Google Scholar 

  • Laitenen O, Tuuhea J, Ahvonen P (1972) Polyarthritis associated with Yersinia enterocolitica infection. Clinical features and laboratory findings in nine cases with severe joint symptoms. Ann Rheum Dis 31:34–39

    CAS  PubMed  Google Scholar 

  • Laitinen O, Leirisalo M, Skylv G (1977) Relation between HLA-B27 and clinical features in patients with yersinia arthritis. Arthritis Rheum 20:1121–1124

    CAS  PubMed  Google Scholar 

  • Lamps LW (2003) Pathology of food-borne infectious diseases of the gastrointestinal tract: an update. Adv Anat Pathol 10:319–327

    PubMed  Google Scholar 

  • Lamps LW, Madhusudhan KT, Havens JM, Greenson JK, Bronner MP, Chiles MC, Dean PJ, Scott MA (2003) Pathogenic Yersinia DNA is detected in bowel and mesenteric lymph nodes from patients with Crohn's disease. Am J Surg Pathol 27:220–227

    PubMed  Google Scholar 

  • Lamps LW, Havens JM, Gilbrech LJ, Dube PH, Scott MA (2006) Molecular biogrouping of pathogenic Yersinia enterocolitica: development of a diagnostic PCR assay with histologic correlation. Am J Clin Pathol 125:658–664

    CAS  PubMed  Google Scholar 

  • Lindner I, Torruellas-Garcia J, Kolonias D, Carlson LM, Tolba KA, Plano GV, Lee KP (2007) Modulation of dendritic cell differentiation and function by YopJ of Yersinia pestis. Eur J Immunol 37:2450–2462

    CAS  PubMed  Google Scholar 

  • Logsdon LK, Mecsas J (2006) The proinflammatory response induced by wild-type Yersinia pseudotuberculosis infection inhibits survival of yop mutants in the gastrointestinal tract and Peyer's patches. Infect Immun 74:1516–1527

    CAS  PubMed  Google Scholar 

  • Lynch M, Painter J, Woodruff R, Braden C (2006) Surveillance for foodborne-disease outbreaks–United States, 1998–2002. MMWR Surveill Summ 55:1–42

    PubMed  Google Scholar 

  • Malaviya R, Ross EA, MacGregor JI, Ikeda T, Little JR, Jakschik BA, Abraham SN (1994) Mast cell phagocytosis of FimH-expressing enterobacteria. J Immunol 152:1907–1914

    CAS  PubMed  Google Scholar 

  • Malaviya R, Ikeda T, Ross E, Abraham SN (1996) Mast cell modulation of neutrophil influx and bacterial clearance at sites of infection through TNF-alpha. Nature 381:77–80

    CAS  PubMed  Google Scholar 

  • Martinez RJ (1989) Thermoregulation-dependent expression of Yersinia enterocolitica protein 1 imparts serum resistance to Escherichia coli K-12. J Bacteriol 171:3732–3739

    CAS  PubMed  Google Scholar 

  • Martinon F, Burns K, Tschopp J (2002) The inflammasome: a molecular platform triggering activation of inflammatory caspases and processing of proIL-beta. Mol Cell 10:417–426

    CAS  PubMed  Google Scholar 

  • Matsumoto H, Young GM (2006) Proteomic and functional analysis of the suite of Ysp proteins exported by the Ysa type III secretion system of Yersinia enterocolitica Biovar 1B. Mol Microbiol 59:689–706

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Mariathasan S, Nahm MH, Baranyay F, Peschon JJ, Chaplin DD (1996) Role of lymphotoxin and the type I TNF receptor in the formation of germinal centers. Science 271:1289–1291

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Fu YX, Molina H, Chaplin DD (1997a) Lymphotoxin-alpha-deficient and TNF receptor-I-deficient mice define developmental and functional characteristics of germinal centers. Immunol Rev 156:137–144

    CAS  PubMed  Google Scholar 

  • Matsumoto M, Fu YX, Molina H, Huang G, Kim J, Thomas DA, Nahm MH, Chaplin DD (1997b) Distinct roles of lymphotoxin alpha and the type I tumor necrosis factor (TNF) receptor in the establishment of follicular dendritic cells from non-bone marrow-derived cells. J Exp Med 186:1997–2004

    CAS  PubMed  Google Scholar 

  • McIver B, Morris JC (1998) The pathogenesis of Graves' disease. Endocrinol Metab Clin North Am 27:73–89

    CAS  PubMed  Google Scholar 

  • McLachlan JB, Abraham SN (2001) Studies of the multifaceted mast cell response to bacteria. Curr Opin Microbiol 4:260–266

    CAS  PubMed  Google Scholar 

  • Mildiner-Earley S, Walker KA, Miller VL (2007) Environmental stimuli affecting expression of the Ysa type three secretion locus. Adv Exp Med Biol 603:211–216

    PubMed  Google Scholar 

  • Miller VL, Falkow S (1988) Evidence for two genetic loci in Yersinia enterocolitica that can promote invasion of epithelial cells. Infect Immun 56:1242–1248

    CAS  PubMed  Google Scholar 

  • Miller VL, Pepe JC (1994) The invasion genes of Yersinia: inv, ail and yadA. Balliere's Clin Infect Dis 1:213–226

    Google Scholar 

  • Miller VL, Farmer JJ III, Hill WE, Falkow S (1989) The ail locus is found uniquely in Yersinia enterocolitica serotypes commonly associated with disease. Infect Immun 57:121–131

    CAS  PubMed  Google Scholar 

  • Miller VL, Bliska JB, Falkow S (1990) Nucleotide sequence of the Yersinia enterocolitica ail gene and characterization of the Ail protein product. J Bacteriol 172:1062–1069

    CAS  PubMed  Google Scholar 

  • Miller VL, Beer KB, Heusipp G, Young BM, Wachtel MR (2001) Identification of regions of Ail required for the invasion and serum resistance phenotypes. Mol Microbiol 41:1053–1062

    CAS  PubMed  Google Scholar 

  • Mukherjee S, Keitany G, Li Y, Wang Y, Ball HL, Goldsmith EJ, Orth K (2006) Yersinia YopJ acetylates and inhibits kinase activation by blocking phosphorylation. Science 312:1211–1214

    CAS  PubMed  Google Scholar 

  • Nagel G, Lahrz A, Dersch P (2001) Environmental control of invasin expression in Yersinia pseudotuberculosis is mediated by regulation of RovA, a transcriptional activator of the SlyA/Hor family. Mol Microbiol 41:1249–1269

    CAS  PubMed  Google Scholar 

  • Nakajima R, Brubaker RR (1993) Association between virulence of Yersinia pestis and suppression of gamma interferon and tumor necrosis factor alpha. Infect Immun 61:23–31

    CAS  PubMed  Google Scholar 

  • Nummelin H, Merckel MC, Leo JC, Lankinen H, Skurnik M, Goldman A (2004) The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll. EMBO J 23:701–711

    CAS  PubMed  Google Scholar 

  • Orth K, Palmer LE, Bao ZQ, Stewart S, Rudolph AE, Bliska JB, Dixon JE (1999) Inhibition of the mitogen-activated protein kinase kinase superfamily by a Yersinia effector. Science 285:1920–1923

    CAS  PubMed  Google Scholar 

  • Palmer LE, Pancetti AR, Greenberg S, Bliska JB (1999) YopJ of Yersinia spp. is sufficient to cause downregulation of multiple mitogen-activated protein kinases in eukaryotic cells. Infect Immun 67:708–716

    CAS  PubMed  Google Scholar 

  • Patarca R, Fletcher MA (1997) Interleukin-1: basic science and clinical applications. Crit Rev Oncogen 8:143–188

    CAS  Google Scholar 

  • Pepe JC, Miller VL (1993) Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc Natl Acad Sci USA 90:6473–6477

    CAS  PubMed  Google Scholar 

  • Pepe JC, Badger JL, Miller VL (1994) Growth phase and low pH affect the thermal regulation of the Yersinia enterocolitica inv gene. Mol Microbiol 11:123–135

    CAS  PubMed  Google Scholar 

  • Pepe JC, Wachtel MR, Wagar E, Miller VL (1995) Pathogenesis of defined invasion mutants of Yersinia enterocolitica in a BALB/c mouse model of infection. Infect Immun 63:4837–4848

    CAS  PubMed  Google Scholar 

  • Perry RD, Fetherston JD (1997) Yersinia pestis: etiologic agent of plague. Clin Microbiol Rev 10:35–66

    CAS  PubMed  Google Scholar 

  • Pierson DE, Falkow S (1993) The ail gene of Yersinia enterocolitica has a role in the ability of the organism to survive serum killing. Infect Immun 61:1846–1852

    CAS  PubMed  Google Scholar 

  • Portnoy DA, Falkow S (1982) Virulence-associated plasmids from Yersinia enterocolitica and Yersinia pestis. Infect Immun 31:775–782

    Google Scholar 

  • Pujol C, Bliska JB (2005) Turning Yersinia pathogenesis outside in: subversion of macrophage function by intracellular yersiniae. Clin Immunol 114:216–226

    CAS  PubMed  Google Scholar 

  • Rebeil R, Ernst RK, Gowen BB, Miller SI, Hinnebusch BJ (2004) Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol 52:1363–1373

    CAS  PubMed  Google Scholar 

  • Revell PA, Miller VL (2000) A chromosomally encoded regulator is required for expression of the Yersinia enterocolitica inv gene and for virulence. Mol Micro 35:677–685

    CAS  Google Scholar 

  • Revell PA, Miller VL (2001) Yersinia virulence: more than a plasmid. FEMS Microbiol Lett 205:159–164

    CAS  PubMed  Google Scholar 

  • Richards C, Kolins J, Trindale CD, Sunnyvale C (1992) Autologous transfusion transmitted Yersinia enterocolitica [Letter]. JAMA 268:1541–1542

    Google Scholar 

  • Roggenkamp A, Ackermann N, Jacobi CA, Truelzsch K, Hoffmann H, Heesemann J (2003) Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YadA. J Bacteriol 185:3735–3744

    CAS  PubMed  Google Scholar 

  • Rosqvist R, Skurnik M, Wolf-Watz H (1988) Increased virulence of Yersinia pseudotuberculosis by two independent mutations. Nature 334:522–524

    CAS  PubMed  Google Scholar 

  • Sauvonnet N, Lambermont I, van der Bruggen P, Cornelis GR (2002) YopH prevents monocyte chemoattractant protein 1 expression in macrophages and T-cell proliferation through inactivation of the phosphatidylinositol 3-kinase pathway. Mol Microbiol 45:805–815

    CAS  PubMed  Google Scholar 

  • Schmid Y, Grassl GA, Buhler OT, Skurnik M, Autenrieth IB, Bohn E (2004) Yersinia enterocolitica adhesin A induces production of interleukin-8 in epithelial cells. Infect Immun 72: 6780–6789

    CAS  PubMed  Google Scholar 

  • Schmiel DH, Wagar E, Karamanou L, Weeks D, Miller VL (1998) Phospholipase A of Yersinia enterocolitica contributes to pathogenesis in a mouse model. Infect Immun 66:3941–3951

    CAS  PubMed  Google Scholar 

  • Schmiel DH, Young GM, Miller VL (2000) The Yersinia enterocolitica phospholipase gene yplA is part of the flagellar regulon. J Bacteriol 182:2314–2320

    CAS  PubMed  Google Scholar 

  • Schotte P, Denecker G, Van Den Broeke A, Vandenabeele P, Cornelis GR, Beyaert R (2004) Targeting Rac1 by the Yersinia effector protein YopE inhibits caspase-1-mediated maturation and release of interleukin-1beta. J Biol Chem 279:25134–25142

    CAS  PubMed  Google Scholar 

  • Schulze-Koops H, Burkhardt H, Heesemann J, Kirsch T, Swoboda B, Bull C, Goodman S, Emmrich F (1993) Outer membrane protein YadA of enteropathogenic yersiniae mediates specific binding to cellular but not plasma fibronectin. Infect Immun 61:2513–2519

    CAS  PubMed  Google Scholar 

  • Shao F, Dixon JE (2003) YopT is a cysteine protease cleaving Rho family GTPases. Adv Exp Med Biol 529:79–84

    PubMed  Google Scholar 

  • Skurnik M (1995) Role of YadA in Yersinia-enterocolitica-induced reactive arthritis: a hypothesis. Trends Microbiol 3:318–319

    CAS  PubMed  Google Scholar 

  • Skurnik M, Toivanen P (1992) LcrF is the temperature-regulated activator of the yadA gene of Yersinia enterocolitica and Yersinia pseudotuberculosis. J Bacteriol 174:2047–2051

    CAS  PubMed  Google Scholar 

  • Sweet CR, Conlon J, Golenbock DT, Goguen J, Silverman N (2007) YopJ targets TRAF proteins to inhibit TLR-mediated NF-kappaB, MAPK and IRF3 signal transduction. Cell Microbiol 9:2700–2715

    CAS  PubMed  Google Scholar 

  • Tertti R, Skurnik M, Vartio T, Kuusela P (1992) Adhesion protein YadA of Yersinia species mediates binding of bacteria to fibronectin. Infect Immun 60:3021–3024

    CAS  PubMed  Google Scholar 

  • Thomson NR, Howard S, Wren BW, Holden MT, Crossman L, Challis GL, Churcher C, Mungall K, Brooks K, Chillingworth T et al (2006) The complete genome sequence and comparative genome analysis of the high pathogenicity Yersinia enterocolitica strain 8081. PLoS Genet 2:e206

    PubMed  Google Scholar 

  • Trasak C, Zenner G, Vogel A, Yuksekdag G, Rost R, Haase I, Fischer M, Israel L, Imhof A, Linder S et al (2007) Yersinia protein kinase YopO is activated by a novel G-actin binding process. J Biol Chem 282:2268–2277

    CAS  PubMed  Google Scholar 

  • Trulzsch K, Sporleder T, Igwe EI, Russmann H, Heesemann J (2004) Contribution of the major secreted yops of Yersinia enterocolitica O:8 to pathogenicity in the mouse infection model. Infect Immun 72:5227–5234

    PubMed  Google Scholar 

  • Van-Snick J (1989) Interleukin-6: an overview. Annu Rev Immunol 8:253–278

    Google Scholar 

  • Velan B, Bar-Haim E, Zauberman A, Mamroud E, Shafferman A, Cohen S (2006) Discordance in the effects of Yersinia pestis on the dendritic cell functions manifested by induction of maturation and paralysis of migration. Infect Immun 74:6365–6376

    CAS  PubMed  Google Scholar 

  • Venecia K, Young GM (2005) Environmental regulation and virulence attributes of the Ysa type III secretion system of Yersinia enterocolitica biovar 1B. Infect Immun 73:5961–5977

    CAS  PubMed  Google Scholar 

  • Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89

    CAS  PubMed  Google Scholar 

  • Wachtel MR, Miller VL (1995) In vitro and in vivo characterization of an ail mutant of Yersinia enterocolitica. Infect Immun 63:2541–2548

    CAS  PubMed  Google Scholar 

  • Walker KA, Miller VL (2004) Regulation of the Ysa type III secretion system of Yersinia enterocolitica by YsaE/SycB and YsrS/YsrR. J Bacteriol 186:4056–4066

    CAS  PubMed  Google Scholar 

  • Witowski SE, Walker KA, Miller VL (2008) YspM, a newly identified Ysa type III secreted protein of Yersinia enterocolitica. J Bacteriol 190:7315–7325

    CAS  PubMed  Google Scholar 

  • Yao T, Mecsas J, Healy J, Falkow S, Chien Y (1999) Suppression of T and B Lymphocyte Activation by a Yersinia pseudotuberculosis Virulence YopH. J Exp Med 190:1343–1350

    CAS  PubMed  Google Scholar 

  • Young GM, Miller VL (1997) Identification of novel chromosomal loci affecting Yersinia enterocolitica pathogenesis. Mol Microbiol 25:319–328

    CAS  PubMed  Google Scholar 

  • Young BM, Young GM (2002) YplA is exported by the Ysc, Ysa, and flagellar type III secretion systems of Yersinia enterocolitica. J Bacteriol f:1324–1334

    Google Scholar 

  • Young GM, Amid D, Miller VL (1996) A bifunctional urease enhances survival of pathogenic Yersinia enterocolitica and Morganella morganii at low pH. J Bacteriol 178:6487–6495

    CAS  PubMed  Google Scholar 

  • Young GM, Schmiel DH, Miller VL (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci USA 96:6456–6461

    CAS  PubMed  Google Scholar 

  • Zhang Y, Bliska JB (2003) Role of Toll-like receptor signaling in the apoptotic response of macrophages to Yersinia infection. Infect Immun 71:1513–1519

    CAS  PubMed  Google Scholar 

  • Zhang Y, Ting AT, Marcu KB, Bliska JB (2005) Inhibition of MAPK and NF-kappa B pathways is necessary for rapid apoptosis in macrophages infected with Yersinia. J Immunol 174:7939–7949

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Dube .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dube, P. (2009). Interaction of Yersinia with the Gut: Mechanisms of Pathogenesis and Immune Evasion. In: Sasakawa, C. (eds) Molecular Mechanisms of Bacterial Infection via the Gut. Current Topics in Microbiology and Immunology, vol 337. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01846-6_3

Download citation

Publish with us

Policies and ethics