Skip to main content

Automatic Fitting of a Deformable Face Mask Using a Single Image

  • Conference paper
Computer Vision/Computer Graphics CollaborationTechniques (MIRAGE 2009)

Abstract

We propose an automatic method for person-independent fitting of a deformable 3D face mask model under varying illumination conditions. Principle Component Analysis is utilised to build a face model which is then used within a particle filter based approach to fit the mask to the image. By subdividing a coarse mask and using a novel texture mapping technique, we further apply the 3D face model to fit into lower resolution images. The illumination invariance is achieved by representing each face as a combination of harmonic images within the weighting function of the particle filter. We demonstrate the performance of our approach on the IMM Face Database and the Extended Yale Face Database B and show that it outperforms the Active Shape Models approach [6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlberg, J.: CANDIDE-3 - an updated parameterized face. Technical Report LiTH-ISY-R-2326, Dept. of Elec. Eng., Linkoping University, Sweden (2001)

    Google Scholar 

  2. Ayala Raggi, S., Altamirano Robles, L., Cruz Enriquez, J.: Towards an illumination-based 3D active appearance model for fast face alignment. In: Ruiz-Shulcloper, J., Kropatsch, W.G. (eds.) CIARP 2008. LNCS, vol. 5197, pp. 568–575. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  3. Basri, R., Jacobs, D.W.: Lambertian reflectance and linear subspaces. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 218–233 (2003)

    Article  Google Scholar 

  4. Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. Pattern Anal. Mach. Intell. 25(9), 1063–1074 (2003)

    Article  Google Scholar 

  5. Cai, D.: Codes and datasets for subspace learning (2007), http://www.cs.uiuc.edu/homes/dengcai2/Data/data.html (retrieved, October 2007)

  6. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models—their training and application. Comp. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  7. Dedeoglu, G., Baker, S., Kanade, T.: Resolution-aware fitting of active appearance models to low-resolution images. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 83–97. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  8. Deutscher, J., Reid, I.: Articulated body motion capture by stochastic search. International Journal of Computer Vision 61(2), 185–205 (2005)

    Article  Google Scholar 

  9. Dornaika, F., Ahlberg, J.: Fitting 3D face models for tracking and Active Appearance Model training. Image and Vision Computing 24(9), 1010–1024 (2006)

    Article  Google Scholar 

  10. Doucet, A., Godsill, S., Andrieu, C.: On sequential Monte Carlo sampling methods for Bayesian filtering. Statistics and Computing 10(3), 197–208 (2000)

    Article  Google Scholar 

  11. Edwards, G.J., Taylor, C.J., Cootes, T.F.: Interpreting face images using active appearance models. In: Face & Gesture Recognition, p. 300. IEEE, Los Alamitos (1998)

    Google Scholar 

  12. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: Illumination cone models for face recognition under variable lighting and pose. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

  13. Hamarneh, G.: Multi-resolution active shape models (2008), http://www.cs.sfu.ca/~hamarneh/software/asm/index.html (retrieved, February 2008)

  14. Kalinkina, D., Gagalowicz, A., Roussel, R.: 3d reconstruction of a human face from images using morphological adaptation. In: Gagalowicz, A., Philips, W. (eds.) MIRAGE 2007. LNCS, vol. 4418, pp. 212–224. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  15. Kuhl, A., Tan, T., Venkatesh, S.: Model-based combined tracking and resolution enhancement. In: Intl. Conf. on Pattern Recognition. IEEE, Los Alamitos (2008)

    Google Scholar 

  16. Lu, L., Zhang, Z., Shum, H.-Y., Liu, Z., Chen, H.: Model- and exemplar-based robust head pose tracking under occlusion and varying expression. In: IEEE Workshop on Models versus Exemplars in Computer Vision (2001)

    Google Scholar 

  17. Nordstrøm, M.M., Larsen, M., Sierakowski, J., Stegmann, M.B.: The IMM face database - an annotated dataset of 240 face images. Technical report, Technical University of Denmark, DTU (May 2004)

    Google Scholar 

  18. Tang, H., Huang, T.S.: MPEG4 performance-driven avatar via robust facial motion tracking. In: IEEE International Conference on Image Processing (2008)

    Google Scholar 

  19. Tu, J., Zhang, Z., Zeng, Z., Huang, T.: Face localization via hierarchical condensation with fisher boosting feature selection. In: CVPR, pp. II: 719–724 (2004)

    Google Scholar 

  20. Turk, M., Pentland, A.: Face recognition using eigenfaces. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 586–591 (1991)

    Google Scholar 

  21. Viola, P., Jones, M.: Rapid object detection using a boosted cascade of simple features. In: IEEE Conference on Computer Vision and Pattern Recognition (2001)

    Google Scholar 

  22. Xiao, J., Baker, S., Matthews, I., Kanade, T.: Real-time combined 2D+3D active appearance models. In: IEEE Comp. Vis. and Pattern Recog., pp. 535–542 (2004)

    Google Scholar 

  23. Xin, L., Wang, Q., Tao, J., Tang, X., Tan, T., Shum, H.: Automatic 3D face modeling from video. In: International Conference on Computer Vision, October 2005, vol. 2, pp. 1193–1199. IEEE, Los Alamitos (2005)

    Google Scholar 

  24. Yan, S., Li, M., Zhang, H., Cheng, Q.: Ranking prior likelihood distributions for bayesian shape localization framework. In: Intl. Conf. on Comp. Vis. IEEE, Los Alamitos (2003)

    Google Scholar 

  25. Zhang, Z.: A flexible new technique for camera calibration. IEEE Transactions on Pattern Analysis and Machine Intelligence 22(11), 1330–1334 (2000)

    Article  Google Scholar 

  26. Zorin, D., Schroder, P.: Subdivision for modeling and animation. In: Subdivision for modeling and animation, Computer Graphics and Interactive Techniques. ACM Siggraph, vol. 36 (July 2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kuhl, A., Tan, T., Venkatesh, S. (2009). Automatic Fitting of a Deformable Face Mask Using a Single Image. In: Gagalowicz, A., Philips, W. (eds) Computer Vision/Computer Graphics CollaborationTechniques. MIRAGE 2009. Lecture Notes in Computer Science, vol 5496. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01811-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01811-4_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01810-7

  • Online ISBN: 978-3-642-01811-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics