Skip to main content

Visualization of Structured Data via Generative Probabilistic Modeling

  • Chapter
Similarity-Based Clustering

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5400))

  • 1340 Accesses

Abstract

We propose a generative probabilistic approach to constructing topographic maps of sequences and tree-structured data. The model formulation specifies a low-dimensional manifold of local noise models on the structured data. The manifold of noise models is induced by a smooth mapping from a low dimensional Euclidean latent space to the parameter space of local noise models. In this paper, we consider noise models endowed with hidden Markovian state space structure, namely Hidden Markov Tree Models (HMTM) and Hidden Markov Models (HMM). Compared with recursive extensions of the traditional Self-Organizing Map that can be used to visualize sequential or tree-structured data, topographic maps formulated within this framework possess a number of advantages such as a well defined cost function that drives the model optimization, the ability to test for overfitting and the accommodation of alternative local noise models implicitly expressing different notions of structured data similarity. Additionally, using information geometry one can calculate magnification factors on the constructed topographic maps. Magnification factors are a useful tool for cluster detection in non-linear topographic map formulations. We demonstrate the framework on two artificial data sets and chorals by J.S. Bach represented as sequences, as well as on images represented as trees.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kohonen, T.: The self-organizing map. Proceedings of the IEEE 78(9), 1464–1480 (1990)

    Article  Google Scholar 

  2. Hammer, B., Micheli, A., Strickert, M., Sperduti, A.: A general framework for unsupervised processing of structured data. Neurocomputing 57, 3–35 (2004)

    Article  Google Scholar 

  3. Svensén, M.: GTM: The Generative Topographic Mapping. Ph.D thesis, Aston University, UK (1998)

    Google Scholar 

  4. Kabán, A., Girolami, M.: A combined latent class and trait model for the analysis and visualization of discrete data. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 859–872 (2001)

    Article  Google Scholar 

  5. Kleiberg, E., van de Wetering, H., van Wijk, J.J.: Botanical visualization of huge hierarchies. In: IEEE Symposium on Information Visualization, INFOVIS, pp. 87–94 (2001)

    Google Scholar 

  6. Chappell, G., Taylor, J.: The temporal kohonen map. Neural Networks 6, 441–445 (1993)

    Article  Google Scholar 

  7. Koskela, T., Heikkonen, M.V.z.J., Kaski, K.: Recurrent SOM with local linear models in time series prediction. In: 6th European Symposium on Artificial Neural Networks, pp. 167–172 (1998)

    Google Scholar 

  8. Horio, K., Yamakawa, T.: Feedback self-organizing map and its application to spatio-temporal pattern classification. International Journal of Computational Intelligence and Applications 1(1), 1–18 (2001)

    Article  Google Scholar 

  9. Voegtlin, T.: Recursive self-organizing maps. Neural Networks 15(8-9), 979–991 (2002)

    Article  PubMed  Google Scholar 

  10. Strickert, M., Hammer, B.: Merge SOM for temporal data. Neurocomputing 64, 39–71 (2005)

    Article  Google Scholar 

  11. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: A self-organizing map for adaptive processing of structured data. IEEE Transactions on Neural Networks 14(3), 491–505 (2003)

    Article  CAS  PubMed  Google Scholar 

  12. Hagenbuchner, M., Sperduti, A., Tsoi, A.C.: Contextual processing of graphs using self-organizing maps. In: Proceedings of the European Symposium on Artificial Neural Networks (ESANN), pp. 399–404 (2005)

    Google Scholar 

  13. Heskes, T.: Energy functions for self-organizing maps. In: Oja, S., Kaski, E. (eds.) Kohonen Maps, pp. 303–315. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  14. Bishop, C.M., Svensén, M., Williams, C.K.I.: GTM: The generative topographic mapping. Neural Computation 10(1), 215–234 (1998)

    Article  Google Scholar 

  15. Rabiner, L.R.: A tutorial on hidden markov models and selected applications in speech recognition. Proceedings of the IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  16. Gianniotis, N., Tiňo, P.: Visualisation of tree-structured data through generative topographic mapping. IEEE Transactions on Neural Networks (2008) (in press)

    Google Scholar 

  17. Crouse, M., Nowak, R., Baraniuk, R.: Wavelet -Based Statistical Signal Processing Using Hidden Markov Models. IEEE Transactions on Signal Processing 46(4), 886–902 (1998)

    Article  Google Scholar 

  18. Durand, J.B.: Gonçalvès, P.: Statistical inference for hidden Markov tree models and application to wavelet trees. Technical Report 4248, INRIA (2001)

    Google Scholar 

  19. Durand, J.B., Gonçalvès, P., Guedon, Y.: Computational methods for hidden markov tree models-an application to wavelet trees. IEEE Transactions on Signal Processing 52(9), 2552–2560 (2004)

    Article  Google Scholar 

  20. Tiňo, P., Kaban, A., Sun, Y.: A generative probabilistic approach to visualizing sets of symbolic sequences. In: KDD 2004: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701–706. ACM Press, New York (2004)

    Google Scholar 

  21. Bishop, C.M., Svensén, M., Williams, C.K.I.: Magnification factors for the gtm algorithm. In: Proceedings IEE Fifth International Conference on Artificial Neural Networks, pp. 64–69 (1997)

    Google Scholar 

  22. Cover, T.M., Thomas, J.A.: Elements of information theory. Wiley-Interscience, Hoboken (1991)

    Book  Google Scholar 

  23. Kullback, S.: Information theory and statistics. Wiley, New York (1959)

    Google Scholar 

  24. Tiňo, P., Gianniotis, N.: Metric properties of structured data visualizations through generative probabilistic modeling. In: IJCAI 2007: 20th International Joint Conference on Artificial Intelligence, pp. 1083–1088. AAAI Press, Menlo Park (2007)

    Google Scholar 

  25. Do, M.N.: Fast approximation of Kullback-Leibler distance for dependence trees and hidden markov models. IEEE Signal Processing Letters 10(4), 115–118 (2003)

    Article  Google Scholar 

  26. Merz, C., Murphy, P.: UCI repository of machine learning databases (1998)

    Google Scholar 

  27. Hagenbuchner, M., Tsoi, A.: The traffic policeman benchmark. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks, April 1999, pp. 63–68. D-Facto (1999)

    Google Scholar 

  28. Kabán, A., Girolami, M.: A combined latent class and trait model for the analysis and visualization of discrete data. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(8), 859–872 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gianniotis, N., Tiňo, P. (2009). Visualization of Structured Data via Generative Probabilistic Modeling. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds) Similarity-Based Clustering. Lecture Notes in Computer Science(), vol 5400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01805-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01805-3_7

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01804-6

  • Online ISBN: 978-3-642-01805-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics