Skip to main content

Statistical Mechanics of On-line Learning

  • Chapter
Similarity-Based Clustering

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5400))

Abstract

We introduce and discuss the application of statistical physics concepts in the context of on-line machine learning processes. The consideration of typical properties of very large systems allows to perfom averages over the randomness contained in the sequence of training data. It yields an exact mathematical description of the training dynamics in model scenarios. We present the basic concepts and results of the approach in terms of several examples, including the learning of linear separable rules, the training of multilayer neural networks, and Learning Vector Quantization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Metropolis, N., Rosenbluth, A.W., Rosenbluth, M.N., Teller, A.H., Teller, E.: Equations of State calculations by fast computing machines. J. Chem. Phys. 21, 1087 (1953)

    Article  CAS  Google Scholar 

  2. Huang, K.: Statistical Mechanics. Wiley and Sons, New York (1987)

    Google Scholar 

  3. Jaynes, E.T.: Probability Theory: The Logic of Science. Bretthorst, G.L. (ed.). Cambridge University Press, Cambridge (2003)

    Google Scholar 

  4. Mace, C.W.H., Coolen, T.: Dynamics of Supervised Learning with Restricted Training Sets. Statistics and Computing 8, 55–88 (1998)

    Article  Google Scholar 

  5. Biehl, M., Schwarze, M.: On-line learning of a time-dependent rule. Europhys. Lett. 20, 733–738 (1992)

    Article  Google Scholar 

  6. Biehl, M., Schwarze, H.: Learning drifting concepts with neural networks. Journal of Physics A: Math. Gen. 26, 2651–2665 (1993)

    Article  Google Scholar 

  7. Kinouchi, O., Caticha, N.: Lower bounds on generalization errors for drifting rules. J. Phys. A: Math. Gen. 26, 6161–6171 (1993)

    Article  Google Scholar 

  8. Vicente, R., Kinouchi, O., Caticha, N.: Statistical Mechanics of Online Learning of Drifting Concepts: A Variational Approach. Machine Learning 32, 179–201 (1998)

    Article  Google Scholar 

  9. Reents, G., Urbanczik, R.: Self-averaging and on-line learning. Phys. Rev. Lett. 80, 5445–5448 (1998)

    Article  CAS  Google Scholar 

  10. Kinzel, W., Rujan, P.: Improving a network generalization ability by selecting examples. Europhys. Lett. 13, 2878 (1990)

    Article  Google Scholar 

  11. Kinouchi, O., Caticha, N.: Optimal generalization in perceptrons. J. Phys. A: Math. Gen. 25, 6243–6250 (1992)

    Article  Google Scholar 

  12. Copelli, M., Caticha, N.: On-line learning in the committee machine. J. Phys. A: Math. Gen. 28, 1615–1625 (1995)

    Article  Google Scholar 

  13. Biehl, M., Riegler, P.: On-line Learning with a Perceptron. Europhys. Lett. 78, 525–530 (1994)

    Article  Google Scholar 

  14. Biehl, M., Riegler, P., Stechert, M.: Learning from Noisy Data: An Exactly Solvable Model. Phys. Rev. E 76, R4624–R4627 (1995)

    Article  Google Scholar 

  15. Copelli, M., Eichhorn, R., Kinouchi, O., Biehl, M., Simonetti, R., Riegler, P., Caticha, N.: Noise robustness in multilayer neural networks. Europhys. Lett. 37, 427–432 (1995)

    Article  Google Scholar 

  16. Vicente, R., Caticha, N.: Functional optimization of online algorithms in multilayer neural networks. J. Phys. A: Math. Gen. 30, L599–L605 (1997)

    Article  Google Scholar 

  17. Opper, M.: A Bayesian approach to on-line learning. In: [27], pp. 363–378 (1998)

    Google Scholar 

  18. Opper, M., Winther, O.: A mean field approach to Bayes learning in feed-forward neural networks. Phys. Rev. Lett. 76, 1964–1967 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. Solla, S.A., Winther, O.: Optimal perceptron learning: an online Bayesian approach. In: [27], pp. 379–398 (1998)

    Google Scholar 

  20. Cybenko, G.V.: Approximation by superposition of a sigmoidal function. Math. of Control, Signals and Systems 2, 303–314 (1989)

    Article  Google Scholar 

  21. Endres, D., Riegler, P.: Adaptive systems on different time scales. J. Phys. A: Math. Gen. 32, 8655–8663 (1999)

    Article  Google Scholar 

  22. Biehl, M., Schwarze, H.: Learning by on-line gradient descent. J. Phys A: Math. Gen. 28, 643 (1995)

    Article  Google Scholar 

  23. Saad, D., Solla, S.A.: Exact solution for on-line learning in multilayer neural networks. Phys. Rev. Lett. 74, 4337–4340 (1995)

    Article  CAS  PubMed  Google Scholar 

  24. Saad, D., Solla, S.A.: Online learning in soft committee machines. Phys. Rev. E 52, 4225–4243 (1995)

    Article  CAS  Google Scholar 

  25. Biehl, M., Riegler, P., Wöhler, C.: Transient Dynamics of Online-learning in two-layered neural networks. J. Phys. A: Math. Gen. 29, 4769 (1996)

    Article  Google Scholar 

  26. Saad, D., Rattray, M.: Globally optimal parameters for on-line learning in multilayer neural networks. Phys. Rev. Lett. 79, 2578 (1997)

    Article  CAS  Google Scholar 

  27. Saad, D. (ed.): On-line learning in neural networks. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  28. Engel, A., Van den Broeck, C.: The Statistical Mechanics of Learning. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  29. Schlösser, E., Saad, D., Biehl, M.: Optimisation of on-line Principal Component Analysis. J. Physics A: Math. Gen. 32, 4061 (1999)

    Article  Google Scholar 

  30. Biehl, M., Schlösser, E.: The dynamics of on-line Principal Component Analysis. J. Physics A: Math. Gen. 31, L97 (1998)

    Article  Google Scholar 

  31. Biehl, M., Mietzner, A.: Statistical mechanics of unsupervised learning. Europhys. Lett. 27, 421–426 (1993)

    Article  Google Scholar 

  32. Kohonen, T.: Self-Organizing Maps. Springer, Berlin (1997)

    Book  Google Scholar 

  33. Kohonen, T.: Learning vector quantization. In: Arbib, M.A. (ed.) The Handbook of Brain Theory and Neural Networks, pp. 537–540. MIT Press, Cambridge (1995)

    Google Scholar 

  34. Van den Broeck, C., Reimann, P.: Unsupervised Learning by Examples: On-line Versus Off-line. Phys. Rev. Lett. 76, 2188–2191 (1996)

    Article  PubMed  Google Scholar 

  35. Reimann, P., Van den Broeck, C., Bex, G.J.: A Gaussian Scenario for Unsupervised Learning. J. Phys. A: Math. Gen. 29, 3521–3533 (1996)

    Article  Google Scholar 

  36. Riegler, P., Biehl, M., Solla, S.A., Marangi, C.: On-line learning from clustered input examples. In: Marinaro, M., Tagliaferri, R. (eds.) Neural Nets WIRN Vietri 1995, Proc. of the 7th Italian Workshop on Neural Nets, pp. 87–92. World Scientific, Singapore (1996)

    Google Scholar 

  37. Marangi, C., Biehl, M., Solla, S.A.: Supervised learning from clustered input examples. Europhys. Lett. 30, 117–122 (1995)

    Article  CAS  Google Scholar 

  38. Biehl, M.: An exactly solvable model of unsupervised learning. Europhysics Lett. 25, 391–396 (1994)

    Article  Google Scholar 

  39. Meir, R.: Empirical risk minimization versus maximum-likelihood estimation: a case study. Neural Computation 7, 144–157 (1995)

    Article  Google Scholar 

  40. Barkai, N., Seung, H.S., Sompolinksy, H.: Scaling laws in learning of classification tasks. Phys. Rev. Lett. 70, 3167–3170 (1993)

    Article  CAS  PubMed  Google Scholar 

  41. Neural Networks Research Centre. Bibliography on the self-organizing maps (SOM) and learning vector quantization (LVQ). Helsinki University of Technology (2002), http://liinwww.ira.uka.de/bibliography/Neural/SOM.LVQ.html

  42. Biehl, M., Ghosh, A., Hammer, B.: Dynamics and generalization ability of LVQ algorithms. J. Machine Learning Research 8, 323–360 (2007)

    Google Scholar 

  43. Biehl, M., Freking, A., Reents, G.: Dynamics of on-line competitive learning. Europhysics Letters 38, 73–78 (1997)

    Article  CAS  Google Scholar 

  44. Biehl, M., Ghosh, A., Hammer, B.: Learning Vector Quantization: The Dynamics of Winner-Takes-All algorithms. Neurocomputing 69, 660–670 (2006)

    Article  Google Scholar 

  45. Witeolar, A., Biehl, M., Ghosh, A., Hammer, B.: Learning Dynamics of Neural Gas and Vector Quantization. Neurocomputing 71, 1210–1219 (2008)

    Article  Google Scholar 

  46. Bojer, T., Hammer, B., Schunk, D., Tluk von Toschanowitz, K.: Relevance determination in learning vector quantization. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks ESANN 2001, pp. 271–276. D-facto publications, Belgium (2001)

    Google Scholar 

  47. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15, 1059–1068 (2002)

    Article  PubMed  Google Scholar 

  48. Schneider, P., Biehl, M., Hammer, B.: Relevance Matrices in Learning Vector Quantization. In: Verleysen, M. (ed.) European Symposium on Artificial Neural Networks ESANN 2007, pp. 37–43. d-side publishing, Belgium (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Biehl, M., Caticha, N., Riegler, P. (2009). Statistical Mechanics of On-line Learning. In: Biehl, M., Hammer, B., Verleysen, M., Villmann, T. (eds) Similarity-Based Clustering. Lecture Notes in Computer Science(), vol 5400. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01805-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01805-3_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01804-6

  • Online ISBN: 978-3-642-01805-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics