Pose Normalization for Local Appearance-Based Face Recognition

  • Hua Gao
  • Hazım Kemal Ekenel
  • Rainer Stiefelhagen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)


We focused this work on handling variation in facial appearance caused by 3D head pose. A pose normalization approach based on fitting active appearance models (AAM) on a given face image was investigated. Profile faces with different rotation angles in depth were warped into shape-free frontal view faces. Face recognition experiments were carried out on the pose normalized facial images with a local appearance-based approach. The experimental results showed a significant improvement in accuracy. The local appearance-based face recognition approach is found to be robust against errors introduced by face model fitting.


Face Recognition Discrete Cosine Transform Recognition Rate Face Image Active Appearance Model 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    The IMM face database,
  2. 2.
    Beymer, D., Poggio, T.: Face recognition from one example view. In: ICCV, Boston, MA, pp. 500–507 (1995)Google Scholar
  3. 3.
    Blanz, V., Vetter, T.: Face recognition based on fitting a 3D morphable model. IEEE Trans. on PAMI 25(9), 1063–1074 (2003)Google Scholar
  4. 4.
    Bookstein, F.L.: Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans. on PAMI 11(6), 567–585 (1989)Google Scholar
  5. 5.
    Chai, X., Shan, S., Gao, W.: Pose normalization for robust face recognition based on statistical affine transformation. In: Chai, X., Shan, S., Gao, W. (eds.) ICICS-PCM 2003, Singapore, vol. 3, pp. 1413–1417 (2003)Google Scholar
  6. 6.
    Chang, K., Bowyer, K., Flynn, P.: Face recognition using 2D and 3D facial data. In: Proc. ACM Workshop on Multimodal User Authentication, pp. 25–32 (2003)Google Scholar
  7. 7.
    Cootes, T.F., Edwards, G.J., Taylor, C.J.: Active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 484–498. Springer, Heidelberg (1998)Google Scholar
  8. 8.
    Cootes, T.F., Wheeler, G.V., Walker, K.N., Taylor, C.J.: View-based active appearance models. Image and Vision Computing 20(9-10), 657–664 (2002)Google Scholar
  9. 9.
    Edwards, G.J., Cootes, T.F., Taylor, C.J.: Face recognition using active appearance models. In: Burkhardt, H., Neumann, B. (eds.) ECCV 1998. LNCS, vol. 1407, pp. 581–595. Springer, Heidelberg (1998)Google Scholar
  10. 10.
    Ekenel, H.K., Stiefelhagen, R.: Local appearance based face recognition using discrete cosine transform. In: 13th European Signal Processing Conference (EUSIPCO 2005), Antalya, Turkey (2005)Google Scholar
  11. 11.
    Ekenel, H.K., Stiefelhagen, R.: Block selection in the local appearance-based face recognition scheme. In: CVPR Biometrics Workshop, New York (2006)Google Scholar
  12. 12.
    Ekenel, H.K., Stiefelhagen, R.: Analysis of local appearance-based face recognition: Effects of feature selection and feature normalization. In: CVPR Biometrics Workshop (2006)Google Scholar
  13. 13.
    Goodall, C.: Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society, Series B 53(2), 285–339 (1991)Google Scholar
  14. 14.
    Gross, R., Matthews, I., Baker, S.: Generic vs. person specific active appearance models. Image and Vision Computing 23(11), 1080–1093 (2005)Google Scholar
  15. 15.
    Guillemaut, J., Kittler, J., Sadeghi, M.T., Christmas, W.J.: General pose face recognition using frontal face model. In: Martínez-Trinidad, J.F., Carrasco Ochoa, J.A., Kittler, J. (eds.) CIARP 2006. LNCS, vol. 4225, pp. 79–88. Springer, Heidelberg (2006)Google Scholar
  16. 16.
    Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild: a database for studying face recognition in unconstrained environments. University of Massachusetts, Amherst, Technical Report 07-49 (October 2007)Google Scholar
  17. 17.
    Kim, D., Kim, J., Cho, S., Jang, Y., Chung, S.-T., Kim, B.-G.: Progressive AAM based robust face alignment. In: Proc. of World Academy of Science, Engineering and Technology, vol. 21, pp. 488–492 (2007)Google Scholar
  18. 18.
    Matthews, I., Baker, S.: Active appearance models revisited. IJCV 60(2), 135–164 (2004)Google Scholar
  19. 19.
    Nefian, A.: A hidden Markov model-based approach for face detection and recognition, Ph.D. dissertation, Georgia Institute of Technology (1999)Google Scholar
  20. 20.
    Phillips, P.J., Wechsler, H., Huang, J., Rauss, P.: The FERET database and evaluation procedure for face recognition algorithms. Image and Vision Computing 16(5), 295–306 (1998)Google Scholar
  21. 21.
    Sanderson, C., Shan, T., Lovell, B.C.: Towards pose-invariant 2D face classification for surveillance. In: Zhou, S.K., Zhao, W., Tang, X., Gong, S. (eds.) AMFG 2007. LNCS, vol. 4778, pp. 276–289. Springer, Heidelberg (2007)Google Scholar
  22. 22.
    Shan, T., Lovell, B.C., Chen, S.: Face recognition robust to head pose from one sample image. In: 18th Int’l. Conf. on Pattern Recognition, vol. 1, pp. 515–518 (2006)Google Scholar
  23. 23.
    Sim, T., Baker, S., Bsat, M.: The CMU pose, illumination and expression (PIE) database. In: Proc. IEEE Int’l. Conf. on Automatic Face and Gesture Recognition (May 2002)Google Scholar
  24. 24.
    Stallkamp, J., Ekenel, H.K., Stiefelhagen, R.: Video-based face recognition on real-world data. In: ICCV 2007, Rio de Jenario, Brasil (October 2007)Google Scholar
  25. 25.
    Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cognitive Neuroscience 3(1), 71–86 (1991)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hua Gao
    • 1
  • Hazım Kemal Ekenel
    • 1
  • Rainer Stiefelhagen
    • 1
  1. 1.Computer Science DepartmentUniversität Karlsruhe (TH)KarlsruheGermany

Personalised recommendations