Nasal Region Contribution in 3D Face Biometrics Using Shape Analysis Framework

  • Hassen Drira
  • Boulbaba Ben Amor
  • Mohamed Daoudi
  • Anuj Srivastava
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)


The main goal of this paper is to illustrate a geometric analysis of 3D facial shapes in presence of varying facial expressions using the nose region. This approach consists of the following two main steps: (i) Each nasal surface is automatically denoised and preprocessed to result in an indexed collection of nasal curves. During this step one detects the tip of the nose and defines a surface distance function with that tip as the reference point. The level curves of this distance function are the desired nasal curves. (ii) Comparisons between noses are based on optimal deformations from one to another. This, in turn, is based on optimal deformations of the corresponding nasal curves across surfaces under an elastic metric. The experimental results, generated using a subset of FRGC v2 dataset, demonstrate the success of the proposed framework in recognizing people under different facial expressions. The recognition rates obtained here exceed those for a baseline ICP algorithm on the same dataset.


3D face/nose biometrics shape analysis automatic preprocessing 


  1. 1.
    Ben Amor, B., Drira, H., Ballihi, L., Srivastava, A., Daoudi, M.: An experimental illustration of 3D facial shape analysis under facial expressions. Annals of telecommunications (accepted for publication)Google Scholar
  2. 2.
    Dijkstra, E.W.: A note on two problems in connection with graphs. Numerische Math. 1, 269–271 (1959)Google Scholar
  3. 3.
    Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.H.: A novel representation for efficient computation of geodesics between n-dimensional curves. In: IEEE CVPR (2007)Google Scholar
  4. 4.
    Joshi, S.H., Klassen, E., Srivastava, A., Jermyn, I.H.: Removing shape-preserving transformations in square-root elastic (SRE) framework for shape analysis of curves. In: Yuille, A.L., Zhu, S.-C., Cremers, D., Wang, Y. (eds.) EMMCVPR 2007. LNCS, vol. 4679, pp. 387–398. Springer, Heidelberg (2007)Google Scholar
  5. 5.
    Klassen, E., Srivastava, A.: Geodesics between 3D closed curves using path-straightening. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3951, pp. 95–106. Springer, Heidelberg (2006)Google Scholar
  6. 6.
    Klassen, E., Srivastava, A., Mio, W., Joshi, S.: Analysis of planar shapes using geodesic paths on shape spaces. IEEE Pattern Analysis and Machine Intelligence 26(3), 372–383 (2004)Google Scholar
  7. 7.
    Michor, P.W., Mumford, D.: Riemannian geometries on spaces of plane curves. Journal of the European Mathematical Society 88, 1–48 (2006)Google Scholar
  8. 8.
    Mio, W., Srivastava, A., Joshi, S.: On shape of plane elastic curves. International Journal of Computer Vision 73(3), 307–324 (2007)Google Scholar
  9. 9.
    Phillips, P.J., Flynn, P.J., Scruggs, T., Bowyer, K.W., Chang, J., Hoffman, K., Marques, J., Min, J., Worek, W.: Overview of the face recognition grand challenge. In: CVPR 2005: Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2005), vol. 1, pp. 947–954 (2005)Google Scholar
  10. 10.
    Samir, C., Srivastava, A., Daoudi, M., Klassen, E.: An intrinsic framework for analysis of facial surfaces. International Journal of Computer Vision (accepted for publication)Google Scholar
  11. 11.
    Srivastava, A., Samir, C., Joshi, S., Daoudi, M.: Elastic shape models for face analysis using curvilinear coordinates. Journal of Mathematical Imaging and Vision (2008) (accepted for publication)Google Scholar
  12. 12.
    Younes, L.: Computable elastic distance between shapes. SIAM Journal of Applied Mathematics 58, 565–586 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Hassen Drira
    • 1
  • Boulbaba Ben Amor
    • 1
    • 2
  • Mohamed Daoudi
    • 1
    • 2
  • Anuj Srivastava
    • 3
  1. 1.LIFL (UMR USTL/CNRS 8022)France
  2. 2.Institut TELECOM/TELECOM Lille 1France
  3. 3.Departement of StatisticsFlorida State UniversityTallahasseeUSA

Personalised recommendations