Face Recognition with LWIR Imagery Using Local Binary Patterns

  • Heydi Méndez
  • Cesar San Martín
  • Josef Kittler
  • Yenisel Plasencia
  • Edel García-Reyes
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)


In this paper, the merits of the Local Binary Patterns (LBP) representation are investigated in the context of face recognition using long-wave infrared images. Long-wave infrared images are invariant to illumination, but at the same time they are affected by a fixed-pattern noise inherent to this technology. The fixed-pattern is normally compensated by means of a non-uniformity correction method. Our study shows that the LBP approach is robust to the fixed-pattern noise, as well as to the presence of glasses. Not only no noise suppressing preprocessing is needed, but in fact if a non-uniformity correction method is applied, the image texture is amplified and the performance of the LBP degraded.


Face Recognition Local Binary Pattern Focal Plane Array Local Binary Pattern Operator Linear Discriminant Analysis Method 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Zou, X., Kittler, J., Messer, K.: Illumination Invariant Face Recognition: A Survey. In: First IEEE International Conference on Biometrics: Theory, Applications, and Systems, pp. 1–8 (2007)Google Scholar
  2. 2.
    Zou, X., Kittler, J., Messer, K.: Face recognition using active near-ir illumination. In: British Machine Vision Conference Proceedings (2005)Google Scholar
  3. 3.
    Li, S.Z., Chu, R., Liao, S., Zhang, L.: Illumination invariant face recognition using near-infrared images. IEEE Trans. Pattern Anal. Mach. Intell. 29(4), 627–639 (2007)Google Scholar
  4. 4.
    Socolinsky, D.A., Wolff, L.B., Neuheisel, J.D., Eveland, C.K.: Illimination invariant face recognition using thermal infrared imagery. In: Proc. IEEE CS Conf. Comp. Vision and Pattern recognition, vol. 1, pp. 527–534 (2001)Google Scholar
  5. 5.
    Kong, S.G., Heo, J., Abidi, B.R., Ki Paik, J., Abidi, M.A.: Recent advances in visual and infrared face recognition - a review. Computer Vision and Image Undertanding 97(1), 103–135 (2005)Google Scholar
  6. 6.
    Heo, J., Savvides, M., Vijaya Kumar, V.K.: Performance Evaluation of Face Recognition using visual and thermal imagery with advanced correlation filters. In: Conference on Computer Vision and Pattern Recognition, pp. 9–14. IEEE Computer Society, Los Alamitos (2005)Google Scholar
  7. 7.
    Socolinsky, D.A., Selinger, A.: A Comparative Analysis of Face Recognition Performance with Visible and Thermal Infrared Imagery. In: ICPR 2002: Proceedings of the 16Th International Conference on Pattern Recognition, vol. 4(4) (2002)Google Scholar
  8. 8.
    Bebis, G., Gyaourova, A., Singh, A., Pavlidis, I.: Face recognition by fusing thermal infrared and visible imagery. Image and Vision Computing 24(7), 727–742 (2006)Google Scholar
  9. 9.
    Singh, R., Vatsa, M., Noore, A.: Integrated multilevel image fusion and match score fusion of visible and infrared face images for robust face recognition. Pattern Recogn. 41(3), 880–893 (2008)Google Scholar
  10. 10.
    Chen, X., Flynn, P.J., Bowyer, K.w.: PCA-based face recognition in infrared imagery: baseline and comparative studies. In: IEEE International Workshop on Analysis and Modeling of Faces and Gestures, AMFG, pp. 127–134 (2003)Google Scholar
  11. 11.
    Pron, H., Menanteau, W., Bissieux, C., Beaudoin, J.L.: Characterization of a focal plane array (FPA) infrared camera. Quantitativa Infrared Thermography QIRT Open Archives, QIRT, 2000–2061 (2000),
  12. 12.
    Milton, A., Barone, F., Kruer, M.: Influence of nonuniformity on infrared focal plane array performance. Opctical Engineering 24, 855–862 (1985)Google Scholar
  13. 13.
    Hardie, R., Hayat, M., Armstrong, E., Yasuda, B.: Scene-based nonuniformity correction using video sequences and registration. Applied Optics 39, 1241–1250 (2000)Google Scholar
  14. 14.
    Ratliff, B., Hayat, M., Tyo, J.: Generalized algebraic scene-based nonuniformity correction algorihtm. The JOSA-A Opt. Soc. of America 22, 239–249 (2005)Google Scholar
  15. 15.
    Harris, J., Chiang, Y.: Nonuniformity correction of infrared image sequences using constant statistics constraint. IEEE Trans. on Image Processing 8, 1148–1151 (1999)Google Scholar
  16. 16.
    Pezoa, J., Hayat, M., Torres, S., Rahman, M.: Multimodel kalman filtering for adaptive nonuniformity correction in infrared sensors. The JOSA-A Opt. Soc. of America 23, 1282–1291 (2006)Google Scholar
  17. 17.
    Averbuch, A., Liron, G., Bobrovsky, B.Z.: Scene based non-uniformity correction in thermal images using Kalman filter. Image and Vision Computing 25, 833–851 (2007)Google Scholar
  18. 18.
    San Martin, C., Meza, P., Torres, S., Carrillo, R.: Improved Infrared Face Identification Performance Using Nonuniformity Correction Techniques. In: Blanc-Talon, J., Bourennane, S., Philips, W., Popescu, D., Scheunders, P. (eds.) ACIVS 2008. LNCS, vol. 5259, pp. 1115–1123. Springer, Heidelberg (2008)Google Scholar
  19. 19.
    Ahonen, T., Hadid, A., Pietikäinen, M.: Face recognition with local binary patterns. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3021, pp. 469–481. Springer, Heidelberg (2004)Google Scholar
  20. 20.
    Marcel, S., Rodriguez, Y., Heusch, G.: On the Recent Use of Local Binary Patterns for Face Authentication. International Journal on Image and Video Processing Special Issue on Facial Image Processing (2007)Google Scholar
  21. 21.
  22. 22.
    Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Machine Intell. 7(19), 711–720 (1997)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Heydi Méndez
    • 1
  • Cesar San Martín
    • 2
  • Josef Kittler
    • 3
  • Yenisel Plasencia
    • 1
  • Edel García-Reyes
    • 1
  1. 1.Advanced Technologies Application CenterLa HabanaCuba
  2. 2.Dep. of Electrical Eng.University of La FronteraTemucoChile
  3. 3.University of Surrey, GuildfordSurreyUK

Personalised recommendations