The Big Brother Database: Evaluating Face Recognition in Smart Home Environments

  • Annalisa Franco
  • Dario Maio
  • Davide Maltoni
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5558)


In this paper a preliminary study on template updating techniques for face recognition in home environments is presented. In particular a new database has been created specifically for this application, where the face images acquired are characterized by a great variability in terms of pose and illumination but the number of subjects is quite limited and a large amount of images can be exploited for intensive incremental learning. The steps of database creation and the characteristics of the data collected are described in detail. We believe such a database could be very useful to develop and optimize face recognition approaches for smart home environments. Moreover some preliminary results on incremental learning are provided and analyzed to evaluate the effects of incremental template updating on the recognition performance.


  1. 1.
    Bailly-Bailliere, E., Bengio, S., Bimbot, F., Hamouz, M., Kittler, J., Mariethoz, J., Matas, J., Messer, K., Popovici, V., Poree, F., Ruiz, B., Thiran, J.P.: The BANCA database and evaluation protocol. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 625–638. Springer, Heidelberg (2003) Google Scholar
  2. 2.
    Cappelli, R., Maio, D., Maltoni, D.: Multi-space KL for Pattern Representation and Classification. IEEE Transactions on Pattern Analysis and Machine Intelligence 23(9), 977–996 (2001) Google Scholar
  3. 3.
  4. 4.
    Flynn, P., Bowyer, K., Phillips, P.J.: Assessment of time dependency in face recognition: an initial study. In: Kittler, J., Nixon, M.S. (eds.) AVBPA 2003. LNCS, vol. 2688, pp. 44–51. Springer, Heidelberg (2003) Google Scholar
  5. 5.
    Franco, A., Lumini, A.: Mixture of KL Subspaces for relevance feedback. Multimedia Tools and Applications 37(2), 189–209 (2008) Google Scholar
  6. 6.
    Fukunaga, K.: Statistical Pattern Recognition. Academic Press, San Diego (1990) Google Scholar
  7. 7.
    Grande Fratello: Edizione 2006. Tutti i 92 giorni (2006),
  8. 8.
  9. 9.
    Li, S.Z., Jain, A.K.: Handbook of Face Recognition. Springer, Heidelberg (2005) Google Scholar
  10. 10.
    Nill, N.B., Bouzas, B.H.: Objective Image Quality Measure Derived from Digital Image Power Spectra. Optical Engineering 31(4), 813–825 (1992) Google Scholar
  11. 11.
  12. 12.
    Phillips, P.J., Scruggs, W.T., O’Toole, A.J., Flynn, P.J., Bowyer, K.W., Schott, C.L., Sharpe, M.: FRVT 2006 and ICE 2006 Large-Scale Results (2006),
  13. 13.
    Viola, P., Jones, M.J.: Rapid Object Detection using a Boosted Cascade of Simple Features. In: Proc. ICPR, vol. 1, pp. 511–518 (2001) Google Scholar
  14. 14.
    Wechsler, H.: Reliable Face Recognition Methods. Springer, Heidelberg (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Annalisa Franco
    • 1
    • 2
  • Dario Maio
    • 1
    • 2
  • Davide Maltoni
    • 1
    • 2
  1. 1.C.d.L. Scienze dell’InformazioneUniversità di BolognaCesenaItaly
  2. 2.DEIS – Viale Risorgimento2 – BolognaItaly

Personalised recommendations