Séminaire de Probabilités XLII pp 229-259 | Cite as
Lévy Systems and Time Changes
- 824 Downloads
Abstract
The Lévy system for a Markov process X provides a convenient description of the distribution of the totally inaccessible jumps of the process. We examine the effect of time change (by the inverse of a not necessarily strictly increasing CAF A) on the Lévy system, in a general context. They key to our time-change theorem is a study of the “irregular” exits from the fine support of A that occur at totally inaccessible times. This permits the construction of a partial predictable exit system (à la Maisonneuve).
The second part of the paper is devoted to some implications of the preceding in a (weak, moderate Markov) duality setting. Fixing an excessive measure m (to serve as duality measure) we obtain formulas relating the “killing” and “jump” measures for the time-changed process to the analogous objects for the original process. These formulas extend, to a very general context, recent work of Chen, Fukushima, and Ying. The key to our development is the Kuznetsov process associated with X and m, and the associated moderate Markov dual process \(\hat X\). Using \(\hat X\) and some excursion theory, we exhibit a general method for constructing excessive measures for X from excessive measures for the time-changed process.
Key words and phrases
Lévy system exit system time change Markov process continuous additive functional excessive measure Kuznetsov processPreview
Unable to display preview. Download preview PDF.
References
- 1.Benveniste, A. and Jacod, J.: Systèmes de Lévy des processus de Markov, Invent. Math. 21 (1973) 183–198.MathSciNetzbMATHCrossRefGoogle Scholar
- 2.Blumenthal, R.M. and Getoor, R.K.: Markov Processes and Potential Theory. Academic Press, New York, 1968.zbMATHGoogle Scholar
- 3.Chen, Z., Fukushima, M., and Ying, J.: Traces of symmetric Markov processes and their characterizations, Ann. Probab. 34 (2006) 1052–1102.MathSciNetzbMATHCrossRefGoogle Scholar
- 4.Chen, Z., Fukushima, M., and Ying, J.: Entrance law, exit system and Lévy system of time changed processes, Illinois J. Math. 50 (2006) 269–312.MathSciNetzbMATHGoogle Scholar
- 5.Dellacherie, C.: Autour des ensembles semi-polaires. In Seminar on Stochastic Processes, 1987, pp. 65–92. Birkhäuser Boston, 1988.Google Scholar
- 6.Dellacherie, C. and Meyer, P.-A.: Probabilités et Potentiel. Chapitres I à IV. Hermann, Paris, 1978.Google Scholar
- 7.Dellacherie, C. and Meyer, P.-A.: Probabilités et Potentiel. Chapitres XII–XVI. Hermann, Paris, 1987. Théorie du potentiel associée à une résolvante. Théorie des processus de Markov.Google Scholar
- 8.Fitzsimmons, P.J.: Homogeneous random measures and a weak order for the excessive measures of a Markov process. Trans. Amer. Math. Soc. 303 (1987) 431–478.MathSciNetzbMATHCrossRefGoogle Scholar
- 9.Fitzsimmons, P.J. and Getoor, R.K.: Revuz measures and time changes, Math. Zeit. 199 (1988) 233–256.MathSciNetzbMATHCrossRefGoogle Scholar
- 10.Fitzsimmons, P.J. and Getoor, R.K.: Smooth measures and continuous additive functionals of right Markov processes. In Itâ's Stochastic Calculus and Probability Theory. Springer, Tokyo, 1996, pp. 31–49.CrossRefGoogle Scholar
- 11.Fitzsimmons, P.J. and Getoor, R.K.: Homogeneous random measures and strongly supermedian kernels of a Markov process, Electronic Journal of Probability 8 (2003), Paper 10, 54 pages.MathSciNetCrossRefGoogle Scholar
- 12.Fitzsimmons, P.J. and Getoor, R.K.: Excursion theory revisited, Illinois J. Math. 50 (2006) 413–437.MathSciNetzbMATHGoogle Scholar
- 13.Fitzsimmons, P.J. and Maisonneuve, B.: Excessive measures and Markov processes with random birth and death, Probab. Th. Rel. Fields 72 (1986) 319–336.MathSciNetzbMATHCrossRefGoogle Scholar
- 14.Fukushima, M., He, P., and Ying, J.: Time changes of symmetric diffusions and Feller measures. Ann. Probab. 32 (2004) 3138–3166.MathSciNetzbMATHCrossRefGoogle Scholar
- 15.Getoor, R.K.: Excessive Measures. Birkhäuser, Boston, 1990.zbMATHCrossRefGoogle Scholar
- 16.Getoor, R.K.: Measure perturbations of Markovian semigroups. Potential Anal. 11 (1999) 101–133.MathSciNetzbMATHCrossRefGoogle Scholar
- 17.Gzyl, H.: Lévy systems for time-changed processes, Ann. Probab. 5 (1977) 565–570.MathSciNetzbMATHCrossRefGoogle Scholar
- 18.Harris, T.E.: The existence of stationary measures for certain Markov processes, In Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, pp. 113–124, Berkeley, 1956.Google Scholar
- 19.Kaspi, H.: Excursions of Markov processes: an approach via Markov additive processes, Z. Wahrsch. verw. Gebiete 64 (1983) 251–268.MathSciNetzbMATHCrossRefGoogle Scholar
- 20.Kaspi, H.: On invariant measures and dual excursions of Markov processes, Z. Wahrsch. verw. Gebiete 66 (1984) 185–204.MathSciNetzbMATHCrossRefGoogle Scholar
- 21.Le Jan, Y.: Balayage et formes de Dirichlet, Z. Wahrsch. verw. Gebiete 37 (1977) 297–319.MathSciNetzbMATHCrossRefGoogle Scholar
- 22.Maisonneuve, B.: Exit systems, Ann. Probab., 3 (1975) 399–411.MathSciNetzbMATHCrossRefGoogle Scholar
- 23.Maisonneuve, B.: Processus de Markov: naissance, retournement, régénération. In Springer Lecture Notes in Math. 1541, pp. 263–292. Springer, berlin, 1993.Google Scholar
- 24.Motoo, M.: The sweeping-out of additive functionals and processes on the boundary, Ann. Inst. Statist. Math. 16 (1964) 317–345.MathSciNetCrossRefGoogle Scholar
- 25.Motoo, M.: Application of additive functionals to the boundary problem of Markov processes. Lévy's system of U-processes. In Proc. Fifth Berkeley Sympos. Math. Statist. and Probability, vol. II, part II, pp. 75–110, Berkeley, 1966.Google Scholar
- 26.Sharpe, M.J.: General Theory of Markov Processes. Academic Press, Boston, 1988.zbMATHGoogle Scholar
- 27.Silverstein, M.: Classification of coharmonic and coinvariant functions for a Lévy process, Ann. Probab. 8 (1980) 539–575.MathSciNetzbMATHCrossRefGoogle Scholar
- 28.Watanabe, S.: On discontinuous additive functionals and Lévy measures of a Markov process, Japan. J. Math. 34 (1964) 53–70.MathSciNetzbMATHGoogle Scholar