Skip to main content

Penalisation of the Standard Random Walk by a Function of the One-Sided Maximum, of the Local Time, or of the Duration of the Excursions

  • Chapter
  • First Online:
Séminaire de Probabilités XLII

Part of the book series: Lecture Notes in Mathematics ((SEMPROBAB,volume 1979))

Abstract

Call (Ω,F ,ℙ,X,F) the canonical space for the standard random walk on ℤ. Thus, Ω denotes the set of paths φ : ℕ → ℤ such that ∣φ(n + 1) − φ(n)∣ = 1, X = (X n , n ≥ 0) is the canonical coordinate process on Ω; F = (F n , n ≥ 0) is the natural filtration of X, F the σ-field V n ≥0 F n , and ℙ0 the probabilitiy on (Ω,F ) such that under ℙ0, X is the standard random walk started form 0, i.e., ℙ0 (X n+1 = jX n = i) = ½ when ∣ji∣ = 1.

Let G : ℕ × Ω → ℝ+ be a positive, adapted functional. For several types of functionals G, we show the existence of a positive F-martingale (M n , n ≥ 0) such that, for all n and all Λ n F n ,

$$\frac{{{\mathbb E}_{\rm 0} [1_{\Lambda _n } G_p ]}}{{{\mathbb E}_{\rm 0} [G_p ]}} \to {\mathbb E}_{\rm 0} [1_{\Lambda _n } M_n ] \quad {\rm when} \quad p \to \infty.$$

Thus, there exists a probability Q on (Ω,F ) such that Q(Λ n ) = \({\mathbb E}_{\rm 0} [1_{\Lambda _n } M_n ]\) for all Λ n F n . We describe the behavior of the process (Ω,X,F) under Q.

The three sections of the article deal respectively with the three situations when G is a function:

  • of the one-sided maximum;

  • of the sign of X and of the time spent at zero;

  • of the length of the excursions of X.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. C. Ackermann, G. Lorang, and B. Roynette, Independence of time and position for a random walk, Revista Matematica Iberoamericana 20 (2004), no. 3, pp. 915917.

    MathSciNet  Google Scholar 

  2. P. Billingsley, Probability measures.

    Google Scholar 

  3. Pierre Debs, Pénalisations de marches aléatoires, Thèse de Doctorat, Institut Élie Cartan, 2007.

    Google Scholar 

  4. Feller, An Introduction to Probability Theory and its Applications, vol. 1, 1950.

    Google Scholar 

  5. ——, An Introduction to Probability Theory and its Applications, vol. 2, 1966–1971.

    Google Scholar 

  6. J.F. LeGall, Une approche élémentaire des théorèmes de décomposition de Williams, Lecture Notes in Mathematics, Séminaire de Probabilités XX, 1984–1985, pp. 447–464.

    Google Scholar 

  7. J. Pitman, One-dimensional Brownian motion and the three-dimensional Bessel process, Advances in Appl. Probability, vol. 7, 1975, pp. p. 511526.

    Article  MathSciNet  MATH  Google Scholar 

  8. B. Roynette, P. Vallois, and M. Yor, Browṇian penalisations related to excursion lengths, submitted to Annales de l'Institut Henri Poincaré.

    Google Scholar 

  9. ——, Limiting laws associated with Brownian motion perturbed by its maximum, minimum and local time, Studia sci. Hungarica Mathematica 43 (2006), no. 3.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Debs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Debs, P. (2009). Penalisation of the Standard Random Walk by a Function of the One-Sided Maximum, of the Local Time, or of the Duration of the Excursions. In: Donati-Martin, C., Émery, M., Rouault, A., Stricker, C. (eds) Séminaire de Probabilités XLII. Lecture Notes in Mathematics(), vol 1979. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01763-6_12

Download citation

Publish with us

Policies and ethics