Data and Structural k-Anonymity in Social Networks

  • Alina Campan
  • Traian Marius Truta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5456)


The advent of social network sites in the last years seems to be a trend that will likely continue. What naive technology users may not realize is that the information they provide online is stored and may be used for various purposes. Researchers have pointed out for some time the privacy implications of massive data gathering, and effort has been made to protect the data from unauthorized disclosure. However, the data privacy research has mostly targeted traditional data models such as microdata. Recently, social network data has begun to be analyzed from a specific privacy perspective, one that considers, besides the attribute values that characterize the individual entities in the networks, their relationships with other entities. Our main contributions in this paper are a greedy algorithm for anonymizing a social network and a measure that quantifies the information loss in the anonymization process due to edge generalization.


Privacy Social Networks K-Anonymity Information Loss 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bader, D.A., Madduri, K.: GTGraph: A Synthetic Graph Generator Suite (2006),
  2. 2.
    Backstrom, L., Dwork, C., Kleinberg, J.: Wherefore Art Thou R3579X? Anonymized Social Networks, Hidden Patterns, and Structural Steganography. In: International World Wide Web Conference (WWW), pp. 181–190 (2007)Google Scholar
  3. 3.
    Bamba, B., Liu, L., Pesti, P., Wang, T.: Supporting Anonymous Location Queries in Mobile Environments with PrivacyGrid. In: ACM World Wide Web Conference (2008)Google Scholar
  4. 4.
    Byun, J.W., Kamra, A., Bertino, E., Li, N.: Efficient k-Anonymization using Clustering Techniques. In: Kotagiri, R., Radha Krishna, P., Mohania, M., Nantajeewarawat, E. (eds.) DASFAA 2007. LNCS, vol. 4443, pp. 188–200. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  5. 5.
    Chakrabarti, D., Zhan, Y., Faloutsos, C.: R-MAT: A Recursive Model for Graph Mining. In: SIAM International Conference on Data Mining (2004)Google Scholar
  6. 6.
    Ciriani, V., Vimercati, S.C., Foresti, S., Samarati, P.: K-Anonymity. In: Secure Data Management In Decentralized Systems, pp. 323–353 (2007)Google Scholar
  7. 7.
    Ghinita, G., Karras, P., Kalinis, P., Mamoulis, N.: Fast Data Anonymization with Low Information Loss. In: Very Large Data Base Conference (VLDB), pp. 758–769 (2007)Google Scholar
  8. 8.
    Han, J., Kamber, M.: Data Mining. In: Concepts and Techniques, 2nd edn. Morgan Kaufmann, San Francisco (2006)Google Scholar
  9. 9.
    Hay, M., Miklau, G., Jensen, D., Weiss, P., Srivastava, S.: Anonymizing Social Networks. Technical Report No. 07-19, University of Massachusetts Amherst (2007)Google Scholar
  10. 10.
    Hay, M., Miklau, G., Jensen, D., Towsley, D., Weis, P.: Resisting Structural Re-identification in Anonymized Social Networks. In: Very Large Data Base Conference (VLDB), pp. 102–114 (2008)Google Scholar
  11. 11.
    HIPAA. Health Insurance Portability and Accountability Act (2002),
  12. 12.
    Lambert, D.: Measures of Disclosure Risk and Harm. Journal of Official Statistics 9, 313–331 (1993)Google Scholar
  13. 13.
    LeFevre, K., DeWitt, D., Ramakrishnan, R.: Mondrian Multidimensional K-Anonymity. In: IEEE International Conference of Data Engineering (ICDE), vol. 25 (2006)Google Scholar
  14. 14.
    Li, N., Li, T., Venkatasubramanian, S.: T-Closeness: Privacy Beyond k-Anonymity and l-Diversity. In: IEEE International Conference on Data Engineering (ICDE), pp. 106–115 (2007)Google Scholar
  15. 15.
    Liu, K., Terzi, E.: Towards Identity Anonymization on Graphs. In: ACM SIGMOD International Conference on Management of Data, pp. 93–106 (2008)Google Scholar
  16. 16.
    Lunacek, M., Whitley, D., Ray, I.: A Crossover Operator for the k-Anonymity Problem. In: Genetic and Evolutionary Computation Conference (GECCO), pp. 1713–1720 (2006)Google Scholar
  17. 17.
    Machanavajjhala, A., Gehrke, J., Kifer, D.: L-Diversity: Privacy beyond K-Anonymity. In: IEEE International Conference on Data Engineering (ICDE), vol. 24 (2006)Google Scholar
  18. 18.
    Malin, B.: An Evaluation of the Current State of Genomic Data Privacy Protection Technology and a Roadmap for the Future. Journal of the American Medical Informatics Association 12(1), 28–34 (2005)CrossRefGoogle Scholar
  19. 19.
    Meyerson, A., Williams, R.: On the complexity of optimal k-anonymity. In: ACM PODS Symposium on the Principles of Database Systems, pp. 223–228 (2004)Google Scholar
  20. 20.
    Newman, D.J., Hettich, S., Blake, C.L., Merz, C.J.: UCI Repository of Machine Learning Databases (1998),
  21. 21.
    Potterat, J.J., Philips-Plummer, L., Muth, S.Q., Rothenberg, R.B., Woodhouse, D.E., Maldonado-Long, T.S., Zimmerman, H.P., Muth, J.B.: Risk Network Structure in the Early Epidemic Phase of HIV Transmission in Colorado Springs. Sexually Transmitted Infections 78, 159–163 (2002)CrossRefGoogle Scholar
  22. 22.
    Samarati, P.: Protecting Respondents Identities in Microdata Release. IEEE Transactions on Knowledge and Data Engineering 13(6), 1010–1027 (2001)CrossRefGoogle Scholar
  23. 23.
    Shetty, J., Adibi, J.: The Enron Email Dataset Database Schema and Brief Statistical Report (2004),
  24. 24.
    Sweeney, L.: K-Anonymity: A Model for Protecting Privacy. International Journal on Uncertainty, Fuzziness, and Knowledge-based Systems 10(5), 557–570 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Sweeney, L.: Achieving k-Anonymity Privacy Protection Using Generalization and Suppression. International Journal on Uncertainty, Fuzziness, and Knowledge-based Systems 10(5), 571–588 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Truta, T.M., Bindu, V.: Privacy Protection: P-Sensitive K-Anonymity Property. In: PDM Workshop, with IEEE International Conference on Data Engineering (ICDE), vol. 94 (2006)Google Scholar
  27. 27.
    Tse, H.: An Ethnography of Social Networks in Cyberspace: The Facebook Phenomenon. The Hong Kong Anthropologist 2, 53–77 (2008)Google Scholar
  28. 28.
    Ward, H.: Prevention Strategies for Sexually Transmitted Infections: Importance of Sexual Network Structure and Epidemic Phase. Sexually Transmitted Infections 83, 43–49 (2007)CrossRefGoogle Scholar
  29. 29.
    Wang, T., Liu, L.: Butterfly: Protecting Output Privacy in Stream Mining. In: IEEE International Conference on Data Engineering (ICDE), pp. 1170–1179 (2008)Google Scholar
  30. 30.
    Wong, R.C.W., Li, J., Fu, A.W.C., Wang, K.: (α, k)-Anonymity: An Enhanced k-Anonymity Model for Privacy-Preserving Data Publishing. In: SIGKDD, pp. 754–759 (2006)Google Scholar
  31. 31.
    Zheleva, E., Getoor, L.: Preserving the Privacy of Sensitive Relationships in Graph Data. In: ACM SIGKDD Workshop on Privacy, Security, and Trust in KDD (PinKDD), pp. 153–171 (2007) Google Scholar
  32. 32.
    Zhou, B., Pei, J.: Preserving Privacy in Social Networks against Neighborhood Attacks. In: IEEE International Conference on Data Engineering (ICDE), pp. 506–515 (2008)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Alina Campan
    • 1
  • Traian Marius Truta
    • 1
  1. 1.Department of Computer ScienceNorthern Kentucky UniversityU.S.A.

Personalised recommendations