Skip to main content

Grain Boundary Phenomena of Functional Ceramics

  • Chapter
  • 2103 Accesses

Abstract

This chapter describe various grain boundaries phenomena related to materials properties including:

  1. 1.

    Grain-boundary segregation;

  2. 2.

    Functions of grain-boundary in mass transfer during sintering;

  3. 3.

    Continuity and coherence of grain boundary;

  4. 4.

    Grain boundary under tensile or compressive stress;

  5. 5.

    Grain boundary serves as “source” and “sink” for vacancies;

  6. 6.

    Grain boundary migration and abnormal grain growth in sintering;

  7. 7.

    Grain boundary acts as captive centers & space charge accumulation spots.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akashi T (1966) Precipitation in grain boundaries of ferrites and their electrical resistivities: I. NEC Res. and Develop. 8:89–106

    Google Scholar 

  • Akashi T (1970) Precipitation in grain boundaries of ferrites and their electrical resistivities-2. NEC Res and Develop 19:66–82

    Google Scholar 

  • Allen A W (1968) in: Fulrath R M, Pask J A (ed) Ceramic Microstructure. Johnwiley & Sons Inc, New York, pp.121–160

    Google Scholar 

  • Ashby M F, Palmer I G (1967) The dragging of solid particles through metals by grain boundaries. ACTA Metal 15:420–423

    Article  Google Scholar 

  • Aust K T, Peat A J, Westbrook J H (1966) Quench-hardening gradients near vacancy sinks in crystals of zone refined lead. ACTA Metallurgial 14(11):1469–1478

    Article  Google Scholar 

  • Azaroff L V (1960) Introduction to Solid. Mc Graw Hill Book Company Inc, New York, p.196

    Google Scholar 

  • Balluffi R W, Seigle L L (1955) Effect of grain boundaries upon pore formation and dimensional changes during diffusion. ACTA Metal 3(2):170–177

    Article  Google Scholar 

  • Bando Y (1971) Modern develop in Powder Metall. Plenum Press, New York, 4:339

    Google Scholar 

  • Bazarova L F, Volynets F K (1979) Compaction kinetics of lead-lanthanum zirconate-titanate during hot pressing. Izvestiya Akademii Nauk SSSR, Neorganicheskie Materialy 15(10):1821

    Google Scholar 

  • Beck P A, Sperry P R (1950) Strain induced grain boundary migration in high purity aluminum. J Appl Phys 21:150

    Article  Google Scholar 

  • Bender B, Toth L, Spann J R (1987) Processing and properties of the high Tc superconducting oxide ceramic YBa2Cu3O7. Advanced Ceramic Materials 2:506–511

    Google Scholar 

  • Bongers P F, et al (1981) In:Levinson L M (eds) Advances in ceramics 1. Amer Ceram Soc Inc, Ohio, pp.38–52

    Google Scholar 

  • Brauer H (1967) On the question of surface states in BaTiO3 PTC semiconductors. Z Angew Phy 23:373

    Google Scholar 

  • Briant C L (1982) In: Vanselow R (eds) Chem and Phys of Solid surface IV. Springer, Berlin, p.465

    Google Scholar 

  • Briant C L (1987) Nitrogen segregation to grain boundaries in austenitic stainless steel. Scripta Metall 21(1):71–74

    Article  Google Scholar 

  • Burggraaf A J, Keizer K (1975) Effects of microstructure on the dielectric properties of lanthana substituted PbTiO3 and Pb(Zr, Ti)O3-ceramics. Mater Res Bull 10:521

    Article  Google Scholar 

  • Burke J E (1949) Grain Control in Industrial Metallurgy. Amer Soc Metals p.38

    Google Scholar 

  • Burke J E (1968) In: Fulrath R M, Pask J A (ed) Ceramic Microstructure. Johnwiley & Sons Inc, New York, p.681

    Google Scholar 

  • Burke J E (1980) In: Kucjynski C C (eds) Material Sci Res 13:417

    Google Scholar 

  • Burke J J (1969) Ultrafine grain Metal. Syracuse Univ press, New York, p.255

    Google Scholar 

  • Burke J J (1969) Ultrafine grain Metal. Syracuse Univ Press, New York, p.300

    Google Scholar 

  • Burn I, Neirman S (1982) Dielectric properties of donor-doped polycrystalline SrTiO3 J Mater Sci 17(12):3510–3524

    Article  Google Scholar 

  • Burn I (1982) Int Symp on Grainboundary and Interface in Ceramics, Extended Abst 63 SII–82

    Google Scholar 

  • Burnett B (1978) In: Sturgess J M (eds) Electron microscopy. Microscopical Society, Canada, p.612

    Google Scholar 

  • Bussem W R, Kahn M (1971) Effects of grain growth on the distribution of Nb in BaTiO3 ceramics. J Amer Ceram Soc 54(9):458–461

    Article  Google Scholar 

  • Callaby D R (1965) Domain wall velocities and the surface layer in BaTiO3 J Appl Phys 36(9):2751–2760

    Article  Google Scholar 

  • Carnigla S C (1966) In: Kriegel W W, Palmour III H (ed) Mat Sci Res 3. Plem Press, New York, p.425

    Google Scholar 

  • Carpenter H C H, Elam C F (1920) Crystal growth and recrystallization in metals. Journal of the Institute of Metals 24:83–131

    Google Scholar 

  • Chadwick G A (1972) Metallography of phase transformation. Batterworth, London, p.160,262

    Google Scholar 

  • Chang Y J (1982) An electron microscopic investigation of grain boundary phenomena in 8/65/35 PLZT ceramics. Ferroelectric Letters 44(6):173–178

    Article  Google Scholar 

  • Chen X T (1988) Phase transition and grain boundary effect of PLZT ceramics, Ph. D. thesies, Shanghai Institute of Ceramics, Shanghai

    Google Scholar 

  • Chiang Y M, Kingery W D, Levinson L M (1982) Compositional changes adjacent to grain boundaries during electrical degradation of a ZnO Varistor. J Appl Phys 53(3):1765–1768

    Article  Google Scholar 

  • Chiang Y, Kingery W D (1983) Grain-boundary composition in manganese zinc ferrites. Adv Ceram 6:300–311

    Google Scholar 

  • Chu B H (1984) In Yen T S, Pask J A (ed) Microstructure and Prop of Ceram Mat, Sciences Press, Beijing, pp.192–201

    Google Scholar 

  • Chu B H, Sun R M, Yin C W (1978) In:Somiya S, Salko S (ed) Proceeding of International Symp of factors in Densification and Sintering of Oxide and Non-oxide Ceramics. Tokyo, pp.601–605

    Google Scholar 

  • Chung S Y, Kang S J L, Dravid V P (2002) Effect of sintering atmosphere on grain boundary segregation and grain growth in niobium-doped SrTiO3. J Amer Ceram Soc 85(11):2805–2810

    Google Scholar 

  • Clarke D R (1978) The microstructural location of the intergranular metal-oxide phase in a zinc oxide varistor. J Appl Phys 49(4):2407–2411

    Article  Google Scholar 

  • Clarke D R (1981) In: Levinson L M (eds) Advances in ceramics 1. Amer Ceram Soc Inc, Ohio, p.67

    Google Scholar 

  • Clarke D R (1982) Int Symp on Grain boundary and Interface in Ceramics, Extended Abst, 61 S82

    Google Scholar 

  • Coble R L, Burke J E (1963) Progress in Ceramic Science. Ppergamon Press, Oxford, 3:199–249

    Google Scholar 

  • Desu S B, Payne D A (1990) Interfacial segregation in perovskites: IV, internal boundary layer devices. J Amer Ceram Soc 73(11):3416–3421

    Article  Google Scholar 

  • DeVries R C, Burke J E (1957) Microstructure of barium titanate ceramics. J Amer Ceram Soc 40(6):200–206

    Article  Google Scholar 

  • Dorre E et al (1984) Alumina. Springer Verlag, Berlin, pp.58–61

    Google Scholar 

  • Drofenik M, Pejovnik S (1982) In: Kolar D, Ppejovnik S, Ristic M M (ed) Sintering-Theory and Practice. Elsevier Scientific Publishing Co, Amsterdam, p.361

    Google Scholar 

  • Fidler J, Kronmueller H (1979) Nucleation and minning of magnetic domains at Co7Sm2 precipitates in Co5Sm crystals. Phys. Sta. Sol. (a) Appl. Res. 56:545–556

    Article  Google Scholar 

  • Franken P E C, van Doveren H (1978) Determination of the grain boundary composition of soft ferrites by auger electron spectroscopy. D.K.G., Berlin, 55(6):287–289

    Google Scholar 

  • Franken P E C, Stacy W T (1980) Examination of grain boundaries of Mn-Zn ferrites by AES and TEM. J Amer Ceram Soc 63(5–6):315–319

    Article  Google Scholar 

  • Franken P E C, Viegers M P A (1981) The grain boundary of SrTiO3 boundary layer capacitor material. J Mater Sci 16:2003–2004

    Article  Google Scholar 

  • Fujitsu S, Toyoda H, Yanagida H (1987) Origin of ZnO varistor. J Amer Ceram Soc 70(4):C71–C72

    Article  Google Scholar 

  • Gerthsen P, Hoffmann B (1973) Current-voltage characteristics and capacitance of single grain boundaries in semiconducting BaTiO3 ceramics. Sol Stat Electr 16:617–622

    Article  Google Scholar 

  • Gleiter H (1969) Theory of grain boundary migration rate. ACTA Metall 17:853–862

    Article  Google Scholar 

  • Goldman A (1990) Modern Ferrite Technology. Van Nostrand, New York, pp.115–144

    Google Scholar 

  • Goo E K, et al (1980) Annual Rep’t Lawence Berkley Lab, Univ. of California, p.24

    Google Scholar 

  • Goo E K, Thomas G (1981) Transmission electron microscopy of Pb(Zr0.52Ti0.48)O3. J Amer Ceram Soc 64(9):517–519

    Article  Google Scholar 

  • Guntersdorfer M, Heywang W (1967) Piezowiderstandseffekt in BaTiO3-halbleitern. Solid State Electronics 10:1117–1118

    Article  Google Scholar 

  • Hahn W, Gleiter H (1981) On the structure of vacancies in grain boundaries. ACTA Metall 29(4):601–606

    Article  Google Scholar 

  • Hari N S, Kutty T R N (1998) Effect of secondary-phase segregation on the positive temperature coefficient in resistance characteristics of n-BaTiO3 ceramics. J Mat Sci 33:3275–3284

    Article  Google Scholar 

  • Hart E W (1972) In: Hu H (eds) The Nature and Behavior of Grain-boundary, Plenum, New York, p.155

    Google Scholar 

  • Hashimoto H, Hama M, Shirasaki S (1972) Preferential diffusion of oxygen along grain boundaries in polycrystalline MgO. J Appl Phys 43(11):4828–4829

    Article  Google Scholar 

  • Hayashi K, Yamamoto T, Sakuma T (1996) Grain orientation dependence of the PTCR effect in niobium-doped barium titanate. J Amer Ceram Soc 79(6):1669–1672

    Article  Google Scholar 

  • Heanstra H B, Ihrig H (1977) Voltage contrast imaging of PTC-type BaTiO3 ceramics having low and high titanium excess. Phys Stat Sol (a) 39: K7–K10

    Article  Google Scholar 

  • Heanstra H B, Ihrig H (1980) Transmission electron microscopy at grain boundaries of PTC-type BaTiO3 ceramics. J Amer Ceram Soc 63(5–6):288–291

    Article  Google Scholar 

  • Hemoto H (1981) In: Levinson L M (eds) Adv in Ceramics, Vol 1. The American Ceramic Soc Inc, Ohio, pp.167–171

    Google Scholar 

  • Herring C (1950) Diffusional viscosity of a polycrystalline solid. J Appl Phys 21:437–445

    Article  Google Scholar 

  • Heydrich H, Knauer U (1981) Grain boundary effects in ferroelectric barium titanate. Ferroelectrics 31:151–156

    Google Scholar 

  • Hirota E (1966) Mn-Zn-ferrites with low loss property and high initial permeability. Jpn J Appl Phys 5:1125–1131

    Article  Google Scholar 

  • Hoffmann B (1973) Model of grain-boundary resistance in doped BaTiO3 ceramics. Sol Stat Electr 16: 623–628

    Article  Google Scholar 

  • Hull D (1975) Introduction to Dislocation. Pergamon Press, Oxford, p.259

    Google Scholar 

  • Ihrig H, Klerk M (1979) Visualization of the grain-boundary potential barriers of PTC-type BaTiO3 ceramics by cathodoluminescence in an electron-probe microanalyzer. Appl Phys Lett 35(4):307–309

    Article  Google Scholar 

  • Ihrig H (1984) In: Yan M F, Heuer A H (ed) Adv in Ceramics 7. The Amer Ceram Soc Inc, Ohio, p.125

    Google Scholar 

  • Ikuhara Y (2001) Grain boundary and interface structures in ceramics. Journal of the Ceramic Society of Japan 109(7):S110–S120

    Google Scholar 

  • Jia D X (1987) Effect of doping and oxidization on the electric conductivity of SPBT(SrxPb1−x TiO3 Bi2O3•3TiO2) capacitor ceramics. Master thesis, Xi’an Jiaotong University, Xi’an

    Google Scholar 

  • Johnson D L (1976) In: Mfulrath R, Pask J A (ed) Ceramic Microstructure 76’1977. p.598

    Google Scholar 

  • Jonker G H (1964) Some aspects of semiconducting barium titanate. Sol Stat Elect 7:895–903

    Article  Google Scholar 

  • Jonker G H (1981) In: Levinson L M (eds) Advances in ceramics 1. Amer Ceram Soc Inc, Ohio, p.155

    Google Scholar 

  • Jorgensen P J, Westbrook J H (1964) Role of solute segregation at grain boundaries during final-stage sintering of alumina. J Amer Ceram Soc 47:332–338

    Article  Google Scholar 

  • Kahn M (1969) Ph.D. Thesis, Pensylvania State Univ.

    Google Scholar 

  • Karim A, Holt D L, Backofen W A (1969) Diffusional flow in a hydrided Mg-0.5 wt PCT Zr alloy. Met Soc of AIME-Trans 245:2421–2424

    Google Scholar 

  • Keve E T, Bye K L (1975) Phase identification and domain structure in PLZT ceramics. J Appl Phys 46(2):810–818

    Article  Google Scholar 

  • Kim D H, Um W S, Kim H G (1996) Electrical breakdown of the positive temperature coefficient of resistivity barium titanate ceramics. J Mater Res 11(8):2002

    Article  Google Scholar 

  • Kim E D, Oh M H, Kim C H (1986) Effects of annealing on the grain boundary potential barrier of ZnO varistor. J Mat Sci 21(10):3491–3496

    Article  Google Scholar 

  • Kingery W D, Sande J B V, Mitamura T (1979) A scanning transmission electron microscopy investigation of grain-boundary segregation in a ZnO-Bi2O3 varistor. J Amer Ceram Soc 62(3–4): 221–222

    Article  Google Scholar 

  • Kolar D, Pejovnik S (1981) Migrating grain boundaries and sintering in multicomponent systems. Adv in Ceramics 1:445–452

    Google Scholar 

  • Kools F (1985) In: Wang F F Y (ed) Advance in Ceramics 15. The Amer Ceram Soc Inc, Ohio, p.177

    Google Scholar 

  • Kooy C (1962) In: Stewart G H (eds) Science of Ceramics 1. Academic Press Inc, London, pp.21–34

    Google Scholar 

  • Koschek G, Kubalek E (1985) Grain-boundary characteristics and their influence on the electrical resistance of barium titanate ceramics. J Amer Ceram Soc 68(11):582–586

    Article  Google Scholar 

  • Kuwabara M, Nakao K, Okazaki K (1988) Instability of the characteristics of the positive temperature coefficient of resistivity in high-curie-point barium-lead titanate ceramics and their grain structures. J Amer Ceram Soc 71(2):C110–C112

    Google Scholar 

  • Laval J Y, Cabanel C, Berger M H, et al (1998) Local electrical behavior, crystallography, and chemistry of grain boundaries in Mn-Zn ferrites. J Amer Ceram Soc 81(5):1133–1140

    Google Scholar 

  • Lehovec K (1953) Space-charge layer and distribution of lattice defects at the surface of ionic crystals. J Chem Phys 21(7):1123–1128

    Article  Google Scholar 

  • Li C W, Kingery W D (1985) Solute segregation at grain ai]boundaries in polycrystalline Al2O3. Adv Ceram 10:368–378

    Google Scholar 

  • Lozinskii M G (1961) High Temperature Metallography. Pergamon Press, Oxford, Fig.105

    Google Scholar 

  • Ma J K (1988) Effect of the secondary phase dopant on PTC material with high Curie. Master Thesis, Shanghai Institute of Ceramics, Shanghai

    Google Scholar 

  • Martin J W, et al (1976) Stability of Microstructure in Metallic systems. The University press, Cambridge, p.278

    Google Scholar 

  • Matsuo Y, Sasaki H (1966) Effect of grain size on microcracking in lead titanate ceramics. J Amer Ceram Soc 49(4):229–230

    Article  Google Scholar 

  • Matsuo Y, Fujimura M, Sasaki H, et al (1968) Semiconducting BaTiO3 with additions of Al2O3, SiO2 and TiO2. Amer Ceram Soc Bull 47(3):292–297

    Google Scholar 

  • Matsuoka M (1981) In: Levinson L M (eds) Advances in ceramics 1.: Amer Ceram Soc Inc, Ohio, p.290

    Google Scholar 

  • Mclean D (1957) Grainboundary in Metalls. Oxford University Press, London, p.108

    Google Scholar 

  • Meiser H, Gleiter H, Mirwald R W (1980) Effect of hydrostatic pressure on the energy of grain boundaries em dash structural transformations. SCR Metall 14(1): 95–99

    Article  Google Scholar 

  • Mishra R K, Edward K G, Gareth T (1981) Amorphous grain boundary phases in ferrimagnetic (Mn, Zn)Fe2O4 and ferroelectric PZT ceramics. Mat Sci Res 14:190–206

    Google Scholar 

  • Mistler R E, Coble R L (1974) Grain-boundary diffusion and boundary widths in metals and ceramics. J Appl Phys 45(4):1507–1509

    Article  Google Scholar 

  • Morris W G. (1973) Electrical properties of ZnO-Bi2O3 ceramics. J Amer Ceram Soc 56(7):360–364

    Article  Google Scholar 

  • Moulson A J, Herbert J M (1990) Electroceramics. Chapman & Hall, London, p.399

    Google Scholar 

  • Mukae K, et al (1981) In: Levinson L M (eds) Advances in ceramics 1. Amer Ceram Soc Inc, Ohio, p.337

    Google Scholar 

  • Nakata A, Chihara H, Sasaki A (1985) Microscopic study of grain-boundary region in polycrystalline ferrites. J Appl Phys 57(8):4177–4179

    Article  Google Scholar 

  • Neklyudova K (1964) Mechanical Twinning of Crystal. 1964

    Google Scholar 

  • Nestler C G (1960) Einfurung in die Electronen Metallographie. p.130

    Google Scholar 

  • Oishi Y, Kingery W D (1960) Self-diffusion of oxygen in single crystal and polycrystalline aluminum oxide. J Chem Phys 33:480–486

    Article  Google Scholar 

  • Okazaki K (1981) In: Levinson L M (eds) Advances in Ceramics Vol 1. The American Ceramic Society Inc, Ohio, pp.23–38

    Google Scholar 

  • Oppoljer H (1979) Scanning Electron Microscopy. I:111

    Google Scholar 

  • Pampuch R (1976) Ceramic Materials. Elsevier Scientific publishing Co, New York, p.70

    Google Scholar 

  • Park H D, Payne D A (1981) Characterization of internal boundary layer capacitors. Adv Ceram 1: 242–253

    Google Scholar 

  • Peterson N L (1983) Diffusion mechanisms in grain boundaries in solids. Adv Ceram 6:236–254

    Google Scholar 

  • Philip H R (1982) Int Symp on Grainboundary and Interface in Ceramics, Extended A bst 4 SII–82

    Google Scholar 

  • Pohanka R C, Rice R W, Walker B E (1976) Effect of internal stress on the strength of BaTiO3. J Amer Ceram Soc 59(1–2):71–74

    Article  Google Scholar 

  • Pohanka R C, Freiman S W, Bender B A (1978) Effect of the phase transformation on the fracture behavior of BaTiO3. J Amer Ceram Soc 61(1–2):72–75

    Article  Google Scholar 

  • Qi J Q (2003) Doping behavior of BaTiO3-based PTCR ceramics. Ph.D. thesis, Tsing hua University

    Google Scholar 

  • Rawal B S, Kahn M, Buessem W R (1981) Grain core-grain shell structure in barium titanate-based dielectrics. Adv Ceram 1:172–188

    Google Scholar 

  • Rehme H (1966) Electron-microscopic detection of barrier layers in barium-titanate cold-conductor ceramics. Phys Stat Sol 18:K101

    Article  Google Scholar 

  • Reijnen P J L (1968) In: Stewart G H (eds) Science of Ceramics 4. The British Ceramic Soc, Manchaster, pp.169–187

    Google Scholar 

  • Rice R W (1966) Mat Sci Res. Plenum Press, New York, 3:401

    Google Scholar 

  • Roseman R D (1998) High temperature poling effects on conducting barium titanate ceramics. Ferroelectrics 215:31–45

    Article  Google Scholar 

  • Rosenbaum H S, Turnbull D (1959) Metallographic investigation of precipitation of silicon from aluminum. ACTA Metal 7(10):664–674

    Article  Google Scholar 

  • Ruhle M (1982) Int Symp on Grainboundary and Interface in Ceramics. Extended Abst 3 SII–82

    Google Scholar 

  • Schulze W A, Cross L E, Buessem W R (1980) Degradation of BaTiO3 ceramic under high AC electric field. J Amer Ceram Soc 63(12):83–87

    Article  Google Scholar 

  • Scott W D, Pask J A (1963) Deformation and fracture of polycrystalline lithium fluoride. J Amer Ceram Soc 46(6):284–293

    Article  Google Scholar 

  • Seuter A M J H (1974) Defect chemistry and electrical transport properties of barium titanate. Philips Research Reports, Supplements, No 3:76

    Google Scholar 

  • Stijntjes T G W, Klerk J, Van Groenou A B (1970) Permeability and conductivity of Ti-substituted MnZn ferrites. Philips Res Rep 25:95–107

    Google Scholar 

  • Stuijts A L (1977) In: Fulrath R M, Pask J A (ed) Ceramic Microstructure 76. Westview Press, Calorado Boulder, p.612

    Google Scholar 

  • Takemoto M, Yamagiwa K, Umeshita Y, et al (2002) Magnetoresistance of manganite ceramics sintered with SiO2 as additive. Key Engineering Materials 216:145–148

    Article  Google Scholar 

  • Tampieri A, Fiorani D, Sparvieri N, et al (1999) Granular and intergranular properties of hot pressed BSCCO (2223) superconductors. J Mater Sci 34:6177–6182

    Article  Google Scholar 

  • Tedmon C S, Vermilyea D A (1970) Some observations on carbide precipitation and grain boundary migration in a duplex stainless steel. Met Trans 1:2043–2046

    Article  Google Scholar 

  • Tseng D, Long Q Y, Tangri K (1986) Hydrogen induced grain boundary migration. Scripta Metall 20:1423–1426

    Article  Google Scholar 

  • Tsunekawa H, Nakata A, Kamijo T, et al (1979) Microstructure and properties of commercial grade manganese zinc ferrites. IEEE Trans Mag 15(6):1855–1857

    Article  Google Scholar 

  • Unwin P N T, Lorimer G W, Nicholson R B (1969) Origin of the grain boundary precipitate free zone. ACTA Metall 17:1363–1377

    Article  Google Scholar 

  • Van Kemenade J T C (1978) Ber D.K.G., 55(6):330

    Google Scholar 

  • Wang Z (1983) Master Thesis, Shanghai Institute of Ceramics, Shanghai

    Google Scholar 

  • Wernicke R (1981) Two-layer model explaining the properties of SrTiO3 boundary layer capacitors. Adv Ceram 1:272–276

    Google Scholar 

  • Wersing W (1980) Low-Q PZT ceramics. Ferroelectrics 26:783–786

    Google Scholar 

  • Westbrook J H (1968) In: Fulrath R M, Pask J A (ed) Ceramic Microstructure. John Wiley & Son Inc, New York, p.231

    Google Scholar 

  • Yamashita K (1982) Effect of grain size on dielectric constant of BaTiO3 ceramics under high DC biasing field. J Ceram Soc Jap 90(6):339

    Google Scholar 

  • Yamashita K, Koumoto K, Yanagida H, et al (1984) Analogy between mechanical and dielectric strength distributions for BaTiO3 ceramics. J Amer Ceram Soc 67:C31–C33

    Article  Google Scholar 

  • Yan M F (1977) In: Fulrath, Pask J A (ed) Ceramic Microstructure’76. Boulder Co Westview Press, pp.276–307

    Google Scholar 

  • Yan M F, Jr Johnson D W (1978) Impurity-induced exaggerated grain growth in Mn-Zn ferrites. J Amer Ceram Soc 61(7–8):342–349

    Article  Google Scholar 

  • Yan M F (1984) In: Yen T S, Pask J A (ed) Microstructure and Prop of Ceram Mat. Sciences Press, Beijing, pp.360–379

    Google Scholar 

  • Yan M F (1984) In: Yen T S, Pask J A (ed) Microstructure and Prop of Ceram Mat, Sciences Press, Beijing, p.365

    Google Scholar 

  • Yan M F (1984) In: Yen T S, Pask J A (ed) Microstructure and Prop of Ceram Mat, Sciences Press, Beijing, p.370

    Google Scholar 

  • Yan M F, Rhodes W W (1982) Preparation and properties of TiO2 varistors. Appl Phys Letters 40(6):536–537

    Article  Google Scholar 

  • Yoon S H, Lee J H, Kim D Y, et al (2003) Effect of the liquid-phase characteristic on the microstructures and dielectric properties of donor-(niobium) and acceptor-(magnesium) doped barium titanate. J Amer Ceram Soc 86(1):88–92

    Article  Google Scholar 

  • Zhu B H, Zhao M Y (1996) Recent Trends of Function Ceramics. Physics in Chinese 25(12):718–724

    Google Scholar 

  • Znidarsic A, Drofenik (1999) High-resistivity grain boundaries in CaO-doped MnZn ferrites for high-frequency power application. J Amer Ceram Soc 82(2):359–365

    Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Metallurgical Industry Press, Beijing and Springer-Verlag GmbH Berlin Heidelberg

About this chapter

Cite this chapter

(2009). Grain Boundary Phenomena of Functional Ceramics. In: Microstructure, Property and Processing of Functional Ceramics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01694-3_2

Download citation

Publish with us

Policies and ethics