Skip to main content

Effects of a Simple Mode Choice Model in a Large-Scale Agent-Based Transport Simulation

  • Chapter
  • First Online:

Part of the book series: Advances in Spatial Science ((ADVSPATIAL))

Abstract

The traditional transportation planning forecasting process is the four-step process, consisting of the following four steps (for example, Ortúzar and Willumsen 1995):1. Trip generation, where sources and sinks of travel are computed 2. Destination choice, where sources and sinks are connected to trips. This results in the so-called origin–destination (OD) matrix 3. Mode choice, where the trips are differentiated by mode 4. Assignment, where routes are found for the trips, taking into account that much-used streets become slower (“congested assignment”).

It has been clear for quite some time now that this approach is at odds with anything that is time dependent. At best, separate runs of the four step process are made for, say, morning peak, mid-day, evening peak, and night. Within the periods, everything is “static” (or steady-state), in the sense flow rates are constant throughout the periods.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This “consequence” is actually the motivation for the specific mathematical form of the activity performance utility contribution. The reason for this motivation is not relevant to this chapter, but is described in Charypar and Nagel (2005).

  2. 2.

    The algorithm to construct the trip durations of the non-car mode was later modified to take exactly twice as long as the car mode at free speed. This explains differences between this chapter and other publications on the same subject. Eventually, these estimates need to be replaced by real-world data.

  3. 3.

    See http://www.openstreetmap.org.

References

  • Arentze TA, Timmermans HJP (2000) ALBATROSS: a learning-based transportation oriented simulation system. EIRASS (European Institute of Retailing and Services Studies), TU Eindhoven, NL

    Google Scholar 

  • Arnott R, de Palma A, Lindsey R (1990) Economics of a bottleneck. J Urban Econ 27(1):111–130

    Article  Google Scholar 

  • Arthur B (1994) Inductive reasoning, bounded rationality, and the bar problem. Am Econ Rev (Papers and Proceedings) 84:406–411

    Google Scholar 

  • Avineri E, Prashker JN (2003) Sensitivity to uncertainty: need for paradigm shift. Transport Res Rec 1854:90–98

    Article  Google Scholar 

  • Balmer M, Raney B, Nagel K (2005) Adjustment of activity timing and duration in an agent-based traffic flow simulation. In: Timmermans HJP (ed) Progress in activity-based analysis. Elsevier, Oxford, UK, pp 91–114

    Chapter  Google Scholar 

  • Balmer M, Axhausen KW, Nagel K (2006) A demand generation framework for large scale micro simulations. Transport Res Rec 1985:125–134, doi: 10.3141/1985–14

    Article  Google Scholar 

  • Ben-Akiva M, Lerman SR (1985) Discrete choice analysis. MIT Press, Cambridge, MA

    Google Scholar 

  • Beuck U, Nagel K, Justen A (2007) Application of the VISEVA demand generation software to Berlin using publicly available behavioral data. Paper 07–2807. Transport Res Board Annual Meeting, Washington, DC

    Google Scholar 

  • Bhat CR, Guo JY, Srinivasan S, et al. (2004) A comprehensive econometric microsimulator for daily activity-travel patterns (cemdap). Transport Res Rec 1894:57–66

    Article  Google Scholar 

  • Bliemer M (2003) Analytical dynamic traffic assignment with interacting user-classes: theoretical advances and applications Using a variational inequality approach. PhD thesis, Technical University Delft, NL

    Google Scholar 

  • Bottom JA (2000) Consistent anticipatory route guidance. PhD thesis. Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • Bowman JL, Bradley M, Shiftan Y et al. (1999) Demonstration of an activity-based model for Portland. In: World transport research: selected proceedings of the 8th world conference on transport research 1998, vol 3. Elsevier, Oxford, pp 171–184

    Google Scholar 

  • Cetin N, Burri A, Nagel K (2003) A large-scale agent-based traffic microsimulation based on queue model. In: Proceedings of Swiss transport research conference (STRC), Monte Verita, CH. See http://www.strc.ch. Earlier version, with inferior performance values: Transportation Research Board Annual Meeting 2003 paper number 03–4272

  • Charypar D, Nagel (2005) Generating complete all-day activity plans with genetic algorithms. Transportation 32(4):369–397

    Article  Google Scholar 

  • Daganzo CF (1998) Queue spillovers in transportation networks with a route choice. Transport Sci 32(1):3–11

    Article  Google Scholar 

  • de Palma A, Marchal F (2002) Real case applications of the fully dynamic METROPOLIS tool-box: An advocacy for large-scale mesoscopic transportation systems. Netw Spatial Econ 2(4):347–369

    Article  Google Scholar 

  • Drossel B (2001) Biological evolution and statistical physics. Preprint arXiv:condmat/0101409v1, arXiv.org

    Google Scholar 

  • Ettema D, Tamminga G, Timmermans H et al. (2003) A micro-simulation model system of departure time and route choice under travel time uncertainty. In: Proceedings of the meeting of the international association for travel behavior research (IATBR), Lucerne, Switzerland. See http://www.ivt.baug.ethz.ch

  • Gawron C (1998) Simulation-based traffic assignment. PhD thesis, University of Cologne, Cologne, Germany. URL http://www.zaik.uni-koeln.de/AFS/publications/theses.html

    Google Scholar 

  • Gerlough DL, Huber MJ (1975) Traffic flow theory. Special report No. 165. Transportation Research Board, National Research Council, Washington, DC

    Google Scholar 

  • Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Reading, MA

    Google Scholar 

  • Hofbauer J, Sigmund K (1998) Evolutionary games and replicator dynamics. Cambridge University Press, Cambridge

    Google Scholar 

  • Holland JD (1992) Adaptation in natural and artificial systems. Bradford Books. Reprint edition

    Google Scholar 

  • Hraber P, Jones T, Forrest S (1994) The ecology of echo. Artif Life 3(3):165–190

    Article  Google Scholar 

  • Jacob RR, Marathe MV, Nagel K (1999) A computational study of routing algorithms for realistic transportation networks. ACM J Exp Algorithm 4 (1999es, Article No. 6). URL http://jea.acm.org/ARTICLES/Vol4Nbr6/

  • Jara-D′ıaz S, Munizaga MA, Greeven P et al. (2004) The activities time assignment model system: The value of work and leisure for Germans and Chileans. Presented at the European Transport Conference (ETC), Strasbourg

    Google Scholar 

  • Jara-Díaz SR, Guerra R (2003) Modeling activity duration and travel choice from a common microeconomic framework. In: Proceedings of the meeting of the International Association for Travel Behavior Research (IATBR), Lucerne, Switzerland. See http://www.ivt.baug.ethz.ch

  • Kaufman DE, Wunderlich KE, Smith RL (1991) An iterative routing/assignment method for anticipatory real-time route guidance. Technical Report IVHS Technical Report 91–02, University of Michigan Department of Industrial and Operations Engineering, Ann Arbor, MI 48109, May 1991

    Google Scholar 

  • Lefebvre N, Balmer M (2007) Fast shortest path computation in time-dependent traffic networks. In: Proceedings of Swiss Transport Research Conference (STRC), Monte Verita, CH, September 2007. See http://www.strc.ch

  • Lin D-Y, Eluru N, Waller ST et al. (2008) Integration of activity-based modelling and dynamic traffic assignment. Transport Res Rec 2076:52–61

    Google Scholar 

  • Lohse D (1997) Verkehrsplanung, volume 2 of Grundlagen der Straßenverkehrstechnik und der Verkehrsplanung. Verlag für Bauwesen, Berlin

    Google Scholar 

  • Lohse D, Schiller C, Teichert H et al. (2006) Ein zweiseitig gekoppeltes Modell zur simultanen Berechnung der Verkehrserzeugung, Verkehrsverteilung und Verkehrsaufteilung: theoretischer Hintergrund und praktische Anwendung für ein nationales Modell der Schweiz. Verkehrsforschung Online 3(1):1

    Google Scholar 

  • Mahut M, Florian M, Tremblay N (2003) Space–time queues and dynamic traffic assignment: a model, algorithm and applications. Paper, Transportation Research Board Annual Meeting, Washington, DC

    Google Scholar 

  • MATSIM www page. MultiAgent Transport SIMulation. http://matsim.org/, accessed 2008. URL http://www.matsim.org

  • Meister K, Rieser M, Ciari F, et al. (2008) Anwendung eines agentenbasierten Modells der Verkehrsnachfrage auf die Schweiz. In: Proceedings of Heureka 08, Stuttgart, Germany, March 2008

    Google Scholar 

  • Nagel K, Strauss M, Shubik M (2004) The importance of timescales: Simple models for economic markets. Physica A 340(4):668–677

    Article  Google Scholar 

  • Ortúzar J de D, Willumsen LG (1995) Modelling transport. Wiley, Chichester

    Google Scholar 

  • Palmer RG, Brian Arthur W, Holland JH et al. (1994) Artificial economic life: a simple model of a stock market. Physica D 75:264–274

    Article  Google Scholar 

  • Peeta S, Ziliaskopoulos AK (2001) Foundations of dynamic traffic assignment: the past, the present and the future. Netw Spatial Econ 1(3):233–265. doi:10.1023/A:1012827724856

    Article  Google Scholar 

  • Pendyala RM, Kitamura R (2004) FAMOS: The Florida activity mobility simulator. In: Timmermans (2005). PTV www page. Planung Transport Verkehr. See http://www.ptv.de, accessed 2004

  • Raney B, Nagel K (2004) Iterative route planning for large-scale modular transportation simulations. Future Gener Comput Syst 20(7):1101–1118

    Article  Google Scholar 

  • Raney B, Nagel K (2006a) An improved framework for large-scale multi-agent simulations of travel behavior. In: Rietveld P, Jourquin B, Westin K (eds) Towards better performing European Transportation Systems. Routledge, London. Similar version TRB preprint number 05–1846

    Google Scholar 

  • Raney B, Nagel K (2006b) An improved framework for large-scale multi-agent simulations of travel behavior. In: Rietveld P, Jourquin B, Westin K (eds) Towards better performing European Transportation Systems. Routledge, London, pp 305–347

    Google Scholar 

  • Reinhold T (2006) Konzept zur integrierten Optimierung des Berliner Nahverkehrs. In: Öffentlicher Personennahverkehr. Springer, Berlin, 2006. doi: 10.1007/3–540–34209–5 8

    Google Scholar 

  • Sheffi Y (1985) Urban transportation networks: Equilibrium analysis with mathematical programming methods. Prentice-Hall, Englewood Cliffs, NJ

    Google Scholar 

  • Timmermans HJP (ed) (2005) Progress in activity-based analysis. Elsevier, Oxford, UK

    Google Scholar 

  • URBANSIM www page, accessed 2007. URL http://www.urbansim.org

Download references

Acknowledgments

This work was funded in part by the Volvo Research and Educational Foundations within the research project “Environmentally oriented Road Pricing for Livable Cities”, and funded in part by the German ministry for research and education (BMBF) within the research project “adaptive traffic control” (ADVEST).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grether, D., Chen, Y., Rieser, M., Nagel, K. (2009). Effects of a Simple Mode Choice Model in a Large-Scale Agent-Based Transport Simulation. In: Reggiani, A., Nijkamp, P. (eds) Complexity and Spatial Networks. Advances in Spatial Science. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01554-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01554-0_13

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01553-3

  • Online ISBN: 978-3-642-01554-0

  • eBook Packages: Business and EconomicsEconomics and Finance (R0)

Publish with us

Policies and ethics