Skip to main content

Thrombozytensekretion

  • Chapter

Zusammenfassung

Die Sekretion der Thrombozytengranula (α-Granula, dichte Granula und Lysosomen) stellt einen zentralen Aktivierungsschritt der Thrombozyten dar, der essenziell für die Bildung eines stabilen Thrombozytenaggregats/Thrombus ist. Blutungsneigungen, die durch Störungen in der Granulabiogenese oder Degranulierung hervorgerufen werden, wie z. B. das “gray platelet syndrome„, oder das “storage pool disease„, verdeutlichen die Wichtigkeit der Thrombozytensekretion für eine intakte Hämostase.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Andre P, Prasad KS, Denis CV et al. (2002) CD40L stabilizes arterial thrombi by a beta3 integrin-dependent mechanism. Nat Med 8: 247–252

    Article  CAS  PubMed  Google Scholar 

  • Arbuzova A, Schmitz AA, Vergeres G (2002) Cross-talk unfolded: MARCKS proteins. Biochem J 362: 1–12

    Article  CAS  PubMed  Google Scholar 

  • Blaser S, Horn J, Wurmell P et al. (2004) The novel human platelet septin SEPT8 is an interaction partner of SEPT4. Thromb Haemost 91: 959–966

    PubMed  Google Scholar 

  • Dale GL, Friese P, Batar P et al. (2002) Stimulated platelets use serotonin to enhance their retention of procoagulant proteins on the cell surface. Nature 415: 175–179

    Article  CAS  PubMed  Google Scholar 

  • Fitzgerald JR, Foster TJ, Cox D (2006) The interaction of bacterial pathogens with platelets. Nat Rev Microbiol 4: 445–457

    Article  CAS  PubMed  Google Scholar 

  • Flaumenhaft R (2003) Molecular basis of platelet granule secretion. Arterioscler Thromb Vasc Biol 23: 1152–1160

    Article  CAS  PubMed  Google Scholar 

  • Flaumenhaft R, Dilks JR, Rozenvayn N et al. (2005) The actin cytoskeleton differentially regulates platelet alpha-granule and dense-granule secretion. Blood 105: 3879–3887

    Article  CAS  PubMed  Google Scholar 

  • Fox JE (2001) Cytoskeletal proteins and platelet signaling. Thromb Haemost 86: 198–213

    CAS  PubMed  Google Scholar 

  • Frenette PS, Denis CV, Weiss L et al. (2000) P-Selectin glycoprotein ligand 1 (PSGL-1) is expressed on platelets and can mediate plateletendothelial interactions in vivo. J Exp Med 191: 1413–1422

    Article  CAS  PubMed  Google Scholar 

  • Heilmann C, Niemann S, Sinha B et al. (2004) Staphylococcus aureus fibronectin binding protein (FnBP)-mediated adherence to platelets, and aggregation of platelets induced by FnBPA but not by FnBPB. J Infect Dis 190: 321–329

    Article  CAS  PubMed  Google Scholar 

  • Israels SJ, McMillan-Ward EM, Easton J et al. (2001) CD63 associates with the alphaIIb beta3 integrin-CD9 complex on the surface of activated platelets. Thromb Haemost 85: 134–141

    CAS  PubMed  Google Scholar 

  • Jurk K, Clemetson KJ, de Groot PG et al. (2003) Thrombospondin-1 mediates platelet adhesion at high shear via glycoprotein Ib (GP Ib): an alternative/backup mechanism to von Willebrand factor. FASEB J 17: 1490–1492

    CAS  PubMed  Google Scholar 

  • Kehrel B, Wierwille S, Clemetson KJ et al. (1998) Glycoprotein VI is a major collagen receptor for platelet activation: it recognizes the platelet activating quaternary structure of collagen, whereas CD36, glycoprotein IIb/IIIa, and von Willebrand factor do not. Blood 91: 491–499

    CAS  PubMed  Google Scholar 

  • Martinez C, Corral J, Dent JA et al. (2006) Platelet septin complexes form rings and associate with the microtubular network. J Thromb Haemost 4: 1388–1395

    Article  CAS  PubMed  Google Scholar 

  • Morell CN, Matsushita K, Chiles K et al. (2005) Regulation of platelet granule exocytosis by S-nitrosylation. PNAS 102: 3782–3787

    Article  Google Scholar 

  • Nofer JR, Herminghaus G, Brodde M et al. (2004) Impaired platelet activation in familial high density lipoprotein deficiency (Tangier disease). J Biol Chem 279: 34032–34037

    Article  CAS  PubMed  Google Scholar 

  • Ozaki Y, Qi R, Satoh K et al. (2000) Platelet activation mediated through membrane glycoproteins: involvement of tyrosine kinases. Semin Thromb Hemost 26: 47–51

    Article  CAS  PubMed  Google Scholar 

  • Reed GL (2004) Platelet secretory mechanisms. Semin Thromb Hemost 30: 441–450

    Article  CAS  PubMed  Google Scholar 

  • Schraw TD, Lemons PP, Dean WL et al. (2003) A role for Sec1/Munc18 proteins in platelet exocytosis. Biochem J 374: 207–217

    Article  CAS  PubMed  Google Scholar 

  • Sixma JJ, Slot JW, Geuze HJ (1989) Immunocytochemical localization of platelet granule proteins. Methods Enzymol 169: 301–311

    Article  CAS  PubMed  Google Scholar 

  • Trifaro JM, Lejen T, Rose SD et al. (2002) Pathways that control cortical F-actin dynamics during secretion. Neurochem Res 27: 1371–1385

    Article  CAS  PubMed  Google Scholar 

  • Viemann D, Strey A, Janning A et al. (2005) Myeloid-related proteins 8 and 14 induce a specific inflammatory response in human microvascular endothelial cells. Blood 105: 2955–2962

    Article  CAS  PubMed  Google Scholar 

  • Walther DJ, Peter JU, Winter S et al. (2003) Serotonylation of small GT-Pases is a signal transduction pathway that triggers platelet alphagranule release. Cell 115: 851–862

    Article  CAS  PubMed  Google Scholar 

  • Woulfe D, Jiang H, Morgans A et al. (2004) Defects in secretion, aggregation, and thrombus formation in platelets from mice lacking Akt2. J Clin Invest 113: 441–450

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jurk, K., Kehrel, B.E. (2010). Thrombozytensekretion. In: Pötzsch, B., Madlener, K. (eds) Hämostaseologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01544-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01544-1_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01543-4

  • Online ISBN: 978-3-642-01544-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics