Skip to main content

Funktion des fibrinolytischen Systems im Nervensystem und intravasale Fibrinolyse

  • Chapter
  • 4451 Accesses

Zusammenfassung

Als Hauptaufgabe des t-PA-/Plasminogensystems wurde lange Zeit die intravaskuläre Fibrinolyse gesehen. Mittlerweile ist klar, dass t-PA auch im Nervensystem eine wichtige Rolle in der Regulation physiologischer und pathologischer Vorgänge spielt — z. B. beim Lernen, der Plastizität der Synapsen, der Entstehung von Angst, bei Anfallskrankheiten, bei multipler Sklerose und bei Alzheimer. Zusätzlich soll noch die Rolle von t-PA als therapeutisches Thrombolytikum beim ischämischen Schlaganfall erwähnt werden, die allerdings durch die extravasale neurotoxische Wirkung des t-PA beeinträchtigt wird.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Collen D (1999) The plasminogen (fibrinolytic) system. Thrombosis and haemostasis 82(2): 259–270

    CAS  PubMed  Google Scholar 

  2. Collen D (2001) Ham-Wasserman lecture: role of the plasminogen system in fibrin-homeostasis and tissue remodeling. Hematology / the Education Program of the American Society of Hematology. Washington (USA): American Society of Hematology, pp 1–9

    Google Scholar 

  3. Carmeliet P, Schoonjans L, Kieckens L et al. (1994) Physiological consequences of loss of plasminogen activator gene function in mice. Nature 368(6470): 419–424

    Article  CAS  PubMed  Google Scholar 

  4. Melchor JP, Strickland S (2005) Tissue plasminogen activator in central nervous system physiology and pathology. Thrombosis and haemostasis 93(4): 655–660

    CAS  PubMed  Google Scholar 

  5. Yepes M, Lawrence DA (2004) Tissue-type plasminogen activator and neuroserpin: a well-balanced act in the nervous system? Trends in cardiovascular medicine 14(5): 173–180

    Article  CAS  PubMed  Google Scholar 

  6. Siao CJ, Tsirka SE (2002) Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci 22(9): 3352–3358

    CAS  PubMed  Google Scholar 

  7. Hajjar KA, Jacovina AT, Chacko J (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. The Journal of biological chemistry 269(33): 21191–21197

    CAS  PubMed  Google Scholar 

  8. Teesalu T, Kulla A, Simisker A et al. (2004) Tissue plasminogen activator and neuroserpin are widely expressed in the human central nervous system. Thrombosis and haemostasis 92(2): 358–368

    CAS  PubMed  Google Scholar 

  9. Qian Z, Gilbert ME, Colicos MA et al. (1993) Tissue-plasminogen activator is induced as an immediate-early gene during seizure, kindling and long-term potentiation. Nature 361(6411): 453–457

    Article  CAS  PubMed  Google Scholar 

  10. Seeds NW, Williams BL, Bickford PC (1995) Tissue plasminogen activator induction in Purkinje neurons after cerebellar motor learning. Science 270(5244): 1992–1994

    Article  CAS  PubMed  Google Scholar 

  11. Seeds NW, Basham ME, Haffke SP (1999) Neuronal migration is retarded in mice lacking the tissue plasminogen activator gene. Proceedings of the National Academy of Sciences of the United States of America 96(24): 14118–14123

    Article  CAS  PubMed  Google Scholar 

  12. Salles FJ, Strickland S (2002) Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J Neurosci 22(6): 2125–2134

    CAS  PubMed  Google Scholar 

  13. Pawlak R, Magarinos AM, Melchor J et al. (2003) Tissue plasminogen activator in the amygdala is critical for stress-induced anxietylike behavior. Nature neuroscience 6(2): 168–174

    Article  CAS  PubMed  Google Scholar 

  14. Seeds NW, Basham ME, Ferguson JE (2003) Absence of tissue plasminogen activator gene or activity impairs mouse cerebellar motor learning. J Neurosci 23(19): 7368–7375

    CAS  PubMed  Google Scholar 

  15. Rodrigues SM, Schafe GE, LeDoux JE (2004) Molecular mechanisms underlying emotional learning and memory in the lateral amygdala. Neuron 44(1): 75–91

    Article  CAS  PubMed  Google Scholar 

  16. Shin CY, Kundel M, Wells DG (2004) Rapid, activity-induced increase in tissue plasminogen activator is mediated by metabotropic glutamate receptor-dependent mRNA translation. J Neurosci 24(42): 9425–9433

    Article  CAS  PubMed  Google Scholar 

  17. Zhuo M, Holtzman DM, Li Y et al. (2000) Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci 20(2): 542–549

    CAS  PubMed  Google Scholar 

  18. Pittman RN (1985) Release of plasminogen activator and a calciumdependent metalloprotease from cultured sympathetic and sensory neurons. Developmental biology 110(1): 91–101

    Article  CAS  PubMed  Google Scholar 

  19. Gualandris A, Jones TE, Strickland S et al. (1996) Membrane depolarization induces calcium-dependent secretion of tissue plasminogen activator. J Neurosci 16(7): 2220–2225

    CAS  PubMed  Google Scholar 

  20. Parmer RJ, Mahata M, Mahata S et al. (1997) Tissue plasminogen activator (t-PA) is targeted to the regulated secretory pathway. Catecholamine storage vesicles as a reservoir for the rapid release of t-PA. The Journal of biological chemistry 272(3): 1976–1982

    Article  CAS  PubMed  Google Scholar 

  21. Baranes D, Lederfein D, Huang YY et al. (1998) Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy fiber pathway. Neuron 21(4): 813–825

    Article  CAS  PubMed  Google Scholar 

  22. Lochner JE, Honigman LS, Grant WF et al. (2006) Activity-dependent release of tissue plasminogen activator from the dendritic spines of hippocampal neurons revealed by live-cell imaging. Journal of neurobiology 66(6): 564–577

    Article  CAS  PubMed  Google Scholar 

  23. Benchenane K, Lopez-Atalaya JP, Fernandez-Monreal M et al. (2004) Equivocal roles of tissue-type plasminogen activator in stroke-induced injury. Trends in neurosciences 27(3): 155–160

    Article  CAS  PubMed  Google Scholar 

  24. Samson AL, Medcalf RL (2006) Tissue-type plasminogen activator: a multifaceted modulator of neurotransmission and synaptic plasticity. Neuron 50(5): 673–678

    Article  CAS  PubMed  Google Scholar 

  25. Malenka RC, Nicoll RA (1999) Long-term potentiation — a decade of progress? Science 285(5435): 1870–1874

    Article  CAS  PubMed  Google Scholar 

  26. Pawlak R, Nagai N, Urano T et al. (2002) Rapid, specific and active site-catalyzed effect of tissue-plasminogen activator on hippocampus-dependent learning in mice. Neuroscience 113(4): 995–1001

    Article  CAS  PubMed  Google Scholar 

  27. Pang PT, Teng HK, Zaitsev E et al. (2004) Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science 306(5695): 487–491

    Article  CAS  PubMed  Google Scholar 

  28. Nicole O, Docagne F, Ali C et al. (2001) The proteolytic activity of tissue-plasminogen activator enhances NMDA receptor-mediated signaling. Nature medicine 7(1): 59–64

    Article  CAS  PubMed  Google Scholar 

  29. Pawlak R, Melchor JP, Matys T et al. (2005) Ethanol-withdrawal seizures are controlled by tissue plasminogen activator via modulation of NR2B-containing NMDA receptors. Proceedings of the National Academy of Sciences of the United States of America 102(2): 443–448

    Article  CAS  PubMed  Google Scholar 

  30. Berger P, Kozlov SV, Cinelli P et al. (1999) Neuronal depolarization enhances the transcription of the neuronal serine protease inhibitor neuroserpin. Molecular and cellular neurosciences 14(6): 455–467

    Article  CAS  PubMed  Google Scholar 

  31. Wang X, Lee SR, Arai K et al. (2003) Lipoprotein receptor-mediated induction of matrix metalloproteinase by tissue plasminogen activator. Nature medicine 9(10): 1313–1317

    Article  CAS  PubMed  Google Scholar 

  32. Nagai T, Yamada K, Yoshimura M et al. (2004) The tissue plasminogen activator-plasmin system participates in the rewarding effect of morphine by regulating dopamine release. Proceedings of the National Academy of Sciences of the United States of America 101(10): 3650–3655

    Article  CAS  PubMed  Google Scholar 

  33. Madani R, Hulo S, Toni N et al. (1999) Enhanced hippocampal longterm potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. The EMBO journal 18(11): 3007–3012

    Article  CAS  PubMed  Google Scholar 

  34. Siconolfi LB, Seeds NW (2003) Mice lacking tissue plasminogen activator and urokinase plasminogen activator genes show attenuated matrix metalloproteases activity after sciatic nerve crush. Journal of neuroscience research 74(3): 430–434

    Article  CAS  PubMed  Google Scholar 

  35. Matys T, Pawlak R, Matys E et al. (2004) Tissue plasminogen activator promotes the effects of corticotropin-releasing factor on the amygdala and anxiety-like behavior. Proceedings of the National Academy of Sciences of the United States of America 101(46): 16345–16350

    Article  CAS  PubMed  Google Scholar 

  36. Tsirka SE, Gualandris A, Amaral DG et al. (1995) Excitotoxin-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377(6547): 340–344

    Article  CAS  PubMed  Google Scholar 

  37. Tsirka SE, Rogove AD, Strickland S (1996) Neuronal cell death and tPA. Nature 384(6605): 123–124

    Article  CAS  PubMed  Google Scholar 

  38. Tsirka SE, Bugge TH, Degen JL et al. (1997) Neuronal death in the central nervous system demonstrates a non-fibrin substrate for plasmin. Proceedings of the National Academy of Sciences of the United States of America 94(18): 9779–9781

    Article  CAS  PubMed  Google Scholar 

  39. Yepes M, Sandkvist M, Coleman TA et al. (2002) Regulation of seizure spreading by neuroserpin and tissue-type plasminogen activator is plasminogen-independent. The Journal of clinical investigation 109(12): 1571–1578

    CAS  PubMed  Google Scholar 

  40. Chen ZL, Strickland S (1997) Neuronal death in the hippocampus is promoted by plasmin-catalyzed degradation of laminin. Cell 91(7): 917–925

    Article  CAS  PubMed  Google Scholar 

  41. Chen ZL, Indyk JA, Strickland S (2003) The hippocampal laminin matrix is dynamic and critical for neuronal survival. Molecular biology of the cell 14(7): 2665–2676

    Article  CAS  PubMed  Google Scholar 

  42. Indyk JA, Chen ZL, Tsirka SE et al. (2003) Laminin chain expression suggests that laminin-10 is a major isoform in the mouse hippocampus and is degraded by the tissue plasminogen activator/plasmin protease cascade during excitotoxic injury. Neuroscience 116(2): 359–371

    Article  CAS  PubMed  Google Scholar 

  43. Selkoe DJ, Schenk D (2003) Alzheimer’s disease: molecular understanding predicts amyloid-based therapeutics. Annual review of pharmacology and toxicology 43: 545–584

    Article  CAS  PubMed  Google Scholar 

  44. Sutton R, Keohane ME, VanderBerg SR et al. (1994) Plasminogen activator inhibitor-1 in the cerebrospinal fluid as an index of neurological disease. Blood Coagul Fibrinolysis (2): 167–171

    Article  Google Scholar 

  45. Mari D, Parnetti L, Coppola R et al. (1996) Hemostasis abnormalities in patients with vascular dementia and Alzheimer’s disease. Thrombosis and haemostasis 75(2): 216–218

    CAS  PubMed  Google Scholar 

  46. Melchor JP, Pawlak R, Strickland S (2003) The tissue plasminogen activator-plasminogen proteolytic cascade accelerates amyloidbeta (Abeta) degradation and inhibits Abeta-induced neurodegeneration. J Neurosci 23(26): 8867–8871

    CAS  PubMed  Google Scholar 

  47. Gveric D, Herrera B, Petzold A et al. (2003) Impaired fibrinolysis in multiple sclerosis: a role for tissue plasminogen activator inhibitors. Brain 126 (Pt.7): 1590–1598

    Article  PubMed  Google Scholar 

  48. Marler JR, Goldstein LB (2003) Medicine. Stroke — tPA and the clinic. Science 301(5640): 1677

    Article  CAS  PubMed  Google Scholar 

  49. Wang YF, Tsirka SE, Strickland S et al. (1998) Tissue plasminogen activator (tPA) increases neuronal damage after focal cerebral ischemia in wild-type and tPA-deficient mice. Nature medicine 4(2): 228–231

    Article  CAS  PubMed  Google Scholar 

  50. Zivin JA, Fisher M, DeGirolami U et al. (1985) Tissue plasminogen activator reduces neurological damage after cerebral embolism. Science 230(4731): 1289–1292

    Article  CAS  PubMed  Google Scholar 

  51. The National Institute of Neurological Disorders and Stroke rt-PA Stroke Study Group (1995) Tissue plasminogen activator for acute ischemic stroke. The New England journal of medicine 333(24): 1581–1587

    Article  Google Scholar 

  52. Yepes M, Sandkvist M, Wong MK et al. (2000) Neuroserpin reduces cerebral infarct volume and protects neurons from ischemia-induced apoptosis. Blood 96(2): 569–576

    CAS  PubMed  Google Scholar 

  53. Nagai N, De Mol M, Lijnen HR et al. (1999) Role of plasminogen system components in focal cerebral ischemic infarction: a gene targeting and gene transfer study in mice. Circulation 99(18): 2440–2444

    CAS  PubMed  Google Scholar 

  54. Cinelli P, Madani R, Tsuzuki N et al. (2001) Neuroserpin, a neuroprotective factor in focal ischemic stroke. Molecular and cellular neurosciences 18(5): 443–457

    Article  CAS  PubMed  Google Scholar 

  55. Yepes M, Lawrence DA (2004) New functions for an old enzyme: nonhemostatic roles for tissue-type plasminogen activator in the central nervous system. Experimental biology and medicine 229(11): 1097–1104

    CAS  PubMed  Google Scholar 

  56. Madani R, Kozlov S, Akhmedov A et al. (2003) Impaired explorative behavior and neophobia in genetically modified mice lacking or overexpressing the extracellular serine protease inhibitor neuroserpin. Molecular and cellular neurosciences 23(3): 473–494

    Article  CAS  PubMed  Google Scholar 

  57. Madani R, Nef S, Vassalli JD (2003) Emotions are building up in the field of extracellular proteolysis. Trends in molecular medicine 9(5): 183–185

    Article  CAS  PubMed  Google Scholar 

  58. Davis RL, Holohan PD, Shrimpton AE et al. (1999) Familial encephalopathy with neuroserpin inclusion bodies. The American journal of pathology 155(6): 1901–1913

    CAS  PubMed  Google Scholar 

  59. Molinari F, Meskanaite V, Munnich A et al. (2003) Extracellular proteases and their inhibitors in genetic diseases of the central nervous system. Human molecular genetics 12 (Spec.No.2): R195–R200

    Article  CAS  PubMed  Google Scholar 

Literatur

  1. Cines DB, Pollak ES, Buck CA et al. (1998) Endothelial cells in physiology and in the pathophysiology of vascular disorders. Blood 91(10): 3527–3561

    CAS  PubMed  Google Scholar 

  2. van Hinsbergh WM (1997) Endothelial permeability for macromolecules. Mechanistic aspects of pathophysiological modulation. Arteriosclerosis, thrombosis, and vascular biology 17(6): 1018–1023

    PubMed  Google Scholar 

  3. Mantovani A, Bussolino F, Introna M (1997) Cytokine regulation of endothelial cell function: from molecular level to the bedside. Immunology today 18(5): 231–240

    Article  CAS  PubMed  Google Scholar 

  4. Etzioni A, Doerschuk CM, Harlan JM (1999) Of man and mouse: leukocyte and endothelial adhesion molecule deficiencies. Blood 94(10): 3281–3288

    CAS  PubMed  Google Scholar 

  5. Lijnen HR, Collen D (1997) Endothelium in hemostasis and thrombosis. Progress in cardiovascular diseases 39(4): 343–350

    Article  CAS  PubMed  Google Scholar 

  6. Nordt TK, Bode C (2000) [Endothelium and endogenous fibrinolysis]. Zeitschrift fur Kardiologie 89(3): 219–226

    Article  CAS  PubMed  Google Scholar 

  7. Kristensen P, Larsson LI, Nielsen LS et al. (1984) Human endothelial cells contain one type of plasminogen activator. FEBS letters 168(1): 33–37

    Article  CAS  PubMed  Google Scholar 

  8. Salame MY, Samani NJ, Masood I et al. (2000) Expression of the plasminogen activator system in the human vascular wall. Atherosclerosis 152(1): 19–28

    Article  CAS  PubMed  Google Scholar 

  9. Padro T, Emeis JJ, Steins M et al. (1995) Quantification of plasminogen activators and their inhibitors in the aortic vessel wall in relation to the presence and severity of atherosclerotic disease. Arteriosclerosis, thrombosis, and vascular biology 15(7): 893–902

    CAS  PubMed  Google Scholar 

  10. Steins MB, Padro T, Li CX et al. (1999) Overexpression of tissue-type plasminogen activator in atherosclerotic human coronary arteries. Atherosclerosis 145(1): 173–180

    Article  CAS  PubMed  Google Scholar 

  11. Oliver JJ, Webb DJ, Newby DE (2005) Stimulated tissue plasminogen activator release as a marker of endothelial function in humans. Arteriosclerosis, thrombosis, and vascular biology 25(12): 2470–2479

    Article  CAS  PubMed  Google Scholar 

  12. Labinjoh C, Newby DE, Dawson P et al. (2000) Fibrinolytic actions of intra-arterial angiotensin II and bradykinin in vivo in man. Cardiovascular research 47(4): 707–714

    Article  CAS  PubMed  Google Scholar 

  13. Newby DE, Wright RA, Ludlam CA et al. (1997) An in vivo model for the assessment of acute fibrinolytic capacity of the endothelium. Thrombosis and haemostasis 78(4): 1242–1248

    CAS  PubMed  Google Scholar 

  14. Chia S, Qadan M, Newton R et al. (2003) Intra-arterial tumor necrosis factor-alpha impairs endothelium-dependent vasodilatation and stimulates local tissue plasminogen activator release in humans. Arteriosclerosis, thrombosis, and vascular biology 23(4): 695–701

    Article  CAS  PubMed  Google Scholar 

  15. Wall U, Jern C, Jern S (1997) High capacity for tissue-type plasminogen activator release from vascular endothelium in vivo. Journal of hypertension 15(12 Pt 2): 1641–1647

    Article  CAS  PubMed  Google Scholar 

  16. Jern C, Selin L, Jern S (1994) In vivo release of tissue-type plasminogen activator across the human forearm during mental stress. Thrombosis and haemostasis 72(2): 285–291

    CAS  PubMed  Google Scholar 

  17. Chandler WL, Levy WC, Veith RC et al. (1993) A kinetic model of the circulatory regulation of tissue plasminogen activator during exercise, epinephrine infusion, and endurance training. Blood 81(12): 3293–3302

    CAS  PubMed  Google Scholar 

  18. Knop M, Gerke V (2002) Ca2+-regulated secretion of tissue-type plasminogen activator and von Willebrand factor in human endothelial cells. Biochimica et biophysica acta 1600(1–2): 162–167

    CAS  PubMed  Google Scholar 

  19. van den Eijnden-Schrauwen Y, Atsma DE, Lupu F et al. (1997) Involvement of calcium and G proteins in the acute release of tissuetype plasminogen activator and von Willebrand factor from cultured human endothelial cells. Arteriosclerosis, thrombosis, and vascular biology 17(10): 2177–2187

    PubMed  Google Scholar 

  20. Emeis JJ, van den Eijnden-Schrauwen Y, van den Hoogen CM et al. (1997) An endothelial storage granule for tissue-type plasminogen activator. The Journal of cell biology 139(1): 245–256

    Article  CAS  PubMed  Google Scholar 

  21. Hanss M, Collen D (1987) Secretion of tissue-type plasminogen activator and plasminogen activator inhibitor by cultured human endothelial cells: modulation by thrombin, endotoxin, and histamine. The Journal of laboratory and clinical medicine 109(1): 97–104

    CAS  PubMed  Google Scholar 

  22. van Hinsbergh VW, Kooistra T, Emeis JJ et al. (1991) Regulation of plasminogen activator production by endothelial cells: role in fibrinolysis and local proteolysis. International journal of radiation biology 60(1–2): 261–272

    Article  PubMed  Google Scholar 

  23. Wiesbauer F, Kaun C, Zorn G et al. (2002) HMG CoA reductase inhibitors affect the fibrinolytic system of human vascular cells in vitro: a comparative study using different statins. British journal of pharmacology 135(1): 284–292

    Article  CAS  PubMed  Google Scholar 

  24. Garcia FU, Wojta J, Broadley KN et al. (1990) Bartonella bacilliformis stimulates endothelial cells in vitro and is angiogenic in vivo. The American journal of pathology 136(5): 1125–1135

    CAS  PubMed  Google Scholar 

  25. Garcia FU, Wojta J, Hoover RL (1992) Interactions between live Bartonella bacilliformis and endothelial cells. The Journal of infectious diseases 165(6): 1138–1141

    CAS  PubMed  Google Scholar 

  26. Diamond SL, Eskin SG, McIntire LV et al. (1989) Fluid flow stimulates tissue plasminogen activator secretion by cultured human endothelial cells. Science 243(4897): 1483–1485

    Article  CAS  PubMed  Google Scholar 

  27. Diamond SL, Sharefkin JB, Dieffenbach C et al. (1990) Tissue plasminogen activator messenger RNA levels increase in cultured human endothelial cells exposed to laminar shear stress. Journal of cellular physiology 143(2): 364–371

    Article  CAS  PubMed  Google Scholar 

  28. Levin EG, Santell L (1988) Stimulation and desensitization of tissue plasminogen activator release from human endothelial cells. The Journal of biological chemistry 263(19): 9360–9365

    CAS  PubMed  Google Scholar 

  29. Sartori MT, Saggiorato G, Spiezia L et al. (2003) Influence of the Alu-repeat I/D polymorphism in t-PA gene intron 8 on the stimulated t-PA release after venous occlusion. Clin Appl Thromb Hemost 9(1): 63–69

    Article  CAS  PubMed  Google Scholar 

  30. Ladenvall P, Wall U, Jern S et al. (2000) Identification of eight novel single-nucleotide polymorphisms at human tissue-type plasminogen activator (t-PA) locus: association with vascular t-PA release in vivo. Thrombosis and haemostasis 84(2): 150–155

    CAS  PubMed  Google Scholar 

  31. Sawdey MS, Loskutoff DJ (1991) Regulation of murine type 1 plasminogen activator inhibitor gene expression in vivo. Tissue specificity and induction by lipopolysaccharide, tumor necrosis factoralpha, and transforming growth factor-beta. The Journal of clinical investigation 88(4): 1346–1353

    Article  CAS  PubMed  Google Scholar 

  32. Loskutoff DJ (1993) A slice of PAI. The Journal of clinical investigation 92(6): 2563

    Article  CAS  PubMed  Google Scholar 

  33. Nordt TK, Klassen KJ, Schneider DJ et al. (1993) Augmentation of synthesis of plasminogen activator inhibitor type-1 in arterial endothelial cells by glucose and its implications for local fibrinolysis. Arterioscler Thromb 13(12): 1822–1828

    CAS  PubMed  Google Scholar 

  34. Vaughan DE, Lazos SA, Tong K (1995) Angiotensin II regulates the expression of plasminogen activator inhibitor-1 in cultured endothelial cells. A potential link between the renin-angiotensin system and thrombosis. The Journal of clinical investigation 95(3): 995–1001

    Article  CAS  PubMed  Google Scholar 

  35. Dechend R, Maass M, Gieffers J et al. (1999) Chlamydia pneumoniae infection of vascular smooth muscle and endothelial cells activates NF-kappaB and induces tissue factor and PAI-1 expression: a potential link to accelerated arteriosclerosis. Circulation 100(13): 1369–1373

    CAS  PubMed  Google Scholar 

  36. Wojta J, Holzer M, Hufnagl P et al. (1991) Hyperthermia stimulates plasminogen activator inhibitor type 1 expression in human umbilical vein endothelial cells in vitro. The American journal of pathology 139(4): 911–919

    CAS  PubMed  Google Scholar 

  37. Fujii S, Lucore CL, Hopkins WE et al. (1990) Induction of synthesis of plasminogen activator inhibitor type-1 by tissue-type plasminogen activator in human hepatic and endothelial cells. Thrombosis and haemostasis 64(3): 412–419

    CAS  PubMed  Google Scholar 

  38. Gallicchio M, Argyriou S, Ianches G et al. (1994) Stimulation of PAI-1 expression in endothelial cells by cultured vascular smooth muscle cells. Arterioscler Thromb 14(5): 815–823

    CAS  PubMed  Google Scholar 

  39. Tipping PG, Davenport P, Gallicchio M et al. (1993) Atheromatous plaque macrophages produce plasminogen activator inhibitor type-1 and stimulate its production by endothelial cells and vascular smooth muscle cells. The American journal of pathology 143(3): 875–885

    CAS  PubMed  Google Scholar 

  40. Zhang JC, Fabry A, Paucz L et al. (1996) Human fibroblasts downregulate plasminogen activator inhibitor type-1 in cultured human macrovascular and microvascular endothelial cells. Blood 88(10): 3880–3886

    CAS  PubMed  Google Scholar 

  41. Nordt TK, Peter K, Bode C et al. (2000) Differential regulation by troglitazone of plasminogen activator inhibitor type 1 in human hepatic and vascular cells. The Journal of clinical endocrinology and metabolism 85(4): 1563–1568

    Article  CAS  PubMed  Google Scholar 

  42. Gallicchio M, Hufnagl P, Wojta J et al. (1996) IFN-gamma inhibits thrombin-and endotoxin-induced plasminogen activator inhibitor type 1 in human endothelial cells. J Immunol 157(6): 2610–2617

    CAS  PubMed  Google Scholar 

  43. Schleef RR, Podor TJ, Dunne E et al. (1990) The majority of type 1 plasminogen activator inhibitor associated with cultured human endothelial cells is located under the cells and is accessible to solution-phase tissue-type plasminogen activator. The Journal of cell biology 110(1): 155–163

    Article  CAS  PubMed  Google Scholar 

  44. Comi P, Chiaramonte R, Maier JA (1995) Senescence-dependent regulation of type 1 plasminogen activator inhibitor in human vascular endothelial cells. Experimental cell research 219(1): 304–308

    Article  CAS  PubMed  Google Scholar 

  45. Takeshita K, Yamamoto K, Ito M et al. (2002) Increased expression of plasminogen activator inhibitor-1 with fibrin deposition in a murine model of aging, “lotho„ mouse. Seminars in thrombosis and hemostasis 28(6): 545–554

    Article  CAS  PubMed  Google Scholar 

  46. Kim J, Hajjar KA (2002) Annexin II: a plasminogen-plasminogen activator co-receptor. Front Biosci 7: d341–d348

    Article  CAS  PubMed  Google Scholar 

  47. Suh TT, Holmback K, Jensen NJ et al. (1995) Resolution of spontaneous bleeding events but failure of pregnancy in fibrinogen-deficient mice. Genes & development 9(16): 2020–2033

    Article  CAS  Google Scholar 

  48. Bugge TH, Flick MJ, Daugherty CC et al. (1995) Plasminogen deficiency causes severe thrombosis but is compatible with development and reproduction. Genes & development 9(7): 794–807

    Article  CAS  Google Scholar 

  49. Ploplis VA, Carmeliet P, Vazirzadeh S et al. (1995) Effects of disruption of the plasminogen gene on thrombosis, growth, and health in mice. Circulation 92(9): 2585–2593

    CAS  PubMed  Google Scholar 

  50. Matsuno H, Kozawa O, Niwa M et al. (1999) Differential role of components of the fibrinolytic system in the formation and removal of thrombus induced by endothelial injury. Thrombosis and haemostasis 81(4): 601–604

    CAS  PubMed  Google Scholar 

  51. Schafer K, Konstantinides S, Riedel C et al. (2002) Different mechanisms of increased luminal stenosis after arterial injury in mice deficient for urokinase-or tissue-type plasminogen activator. Circulation 106(14): 1847–1852

    Article  PubMed  Google Scholar 

  52. Farrehi PM, Ozaki CK, Carmeliet P etal. (1998) Regulation of arterial thrombolysis by plasminogen activator inhibitor-1 in mice. Circulation 97(10): 1002–1008

    CAS  PubMed  Google Scholar 

  53. Konstantinides S, Schafer K, Thinnes T et al. (2001) Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in mice. Circulation 103(4): 576–583

    CAS  PubMed  Google Scholar 

  54. Smith LH, Dixon JD, Stringham JR et al. (2006) Pivotal role of PAI-1 in a murine model of hepatic vein thrombosis. Blood 107(1): 132–134

    Article  CAS  PubMed  Google Scholar 

  55. Lijnen HR (2001) Gene targeting in hemostasis. Alpha2-antiplasmin. Front Biosci 6: D239–D247

    Article  CAS  PubMed  Google Scholar 

  56. Lijnen HR, Okada K, Matsuo O et al. (1999) Alpha2-antiplasmin gene deficiency in mice is associated with enhanced fibrinolytic potential without overt bleeding. Blood 93(7): 2274–2281

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wojta, J. (2010). Funktion des fibrinolytischen Systems im Nervensystem und intravasale Fibrinolyse. In: Pötzsch, B., Madlener, K. (eds) Hämostaseologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01544-1_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01544-1_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01543-4

  • Online ISBN: 978-3-642-01544-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics