Skip to main content

Komponenten des fibrinolytischen Systems

  • Chapter
Hämostaseologie
  • 4475 Accesses

Zusammenfassung

Das fibrinolytische System ist für die Auflösung von Blutgerinnseln und somit für die Wiederherstellung des intravasalen Blutflusses verantwortlich. Außerdem ist es am Matrixabbau bzw. Matrixumbau beteiligt, der für Prozesse wie Wachstum, Gewebereparatur, Tumorinvasion und Metastasierung wichtig ist. Bei den Komponenten des fibrinolytischen Systems handelt es sich hauptsächlich um proteolytische Enzyme, Proteaseinhibitoren und zelluläre Rezeptoren bzw. zellmembranständige Bindungsproteine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Alfano D, Franco P, Vocca I et al. (2005) The urokinase plasminogen activator and its receptor: role in cell growth and apoptosis 2. Thromb Haemost 93: 205–211

    CAS  PubMed  Google Scholar 

  • Beckmann R, Geiger M, Binder BR (1988) Plasminogen activation by tissue plasminogen activator in the presence of stimulating CNBr fragment FCB-2 of fibrinogen is a two-phase reaction. Kinetic analysis of the initial phase of slow plasmin formation. J Biol Chem 263: 7176–7180

    CAS  PubMed  Google Scholar 

  • Behrendt N, Jensen ON, Engelholm LH et al. (2000) A urokinase receptor associated protein with specific collagen binding properties. J Biol Chem 275: 1993–2002

    Article  CAS  PubMed  Google Scholar 

  • Boffa MB, Reid TS, Joo E et al. (1999) Characterization of the gene encoding human TAFI (thrombin activatable fibrinolysis inhibitor; plasma procarboxypeptidase B). Biochemistry 38: 6547–6558

    Article  CAS  PubMed  Google Scholar 

  • Borglum AD, Byskov A, Ragno P et al. (1992) Assignment of the urokinase-type plasminogen activator receptor gene (PLAUR) to chromosome 19q13.1–q13.2. Am J Hum Genet 50: 492–497

    CAS  PubMed  Google Scholar 

  • Bouma BN, Meijers JC (2003) Thrombin activatable fibrinolysis inhibitor (TAFI, plasma procarboxypeptidase B, procarboxypeptidase R, procarboxypeptidase U). J Thromb Haemost 1: 1566–1574

    Article  CAS  PubMed  Google Scholar 

  • Brogren H, Karlsson L, Andersson M et al. (2004) Platelets synthesize large amounts of active plasminogen activator inhibitor 1. Blood 104: 3943–3948

    Article  CAS  PubMed  Google Scholar 

  • Castellino FJ, Ploplis VA (2005) Structure and function of the plasminogen/plasmin system. Thromb Haemost 93: 647–654

    CAS  PubMed  Google Scholar 

  • Colman RW, Pixley RA, Najamunnisa S et al. (1997) Binding of high molecular weight kininogen to human endothelial cells is mediated via a site within domains 2 and 3 of the urokinase receptor. J Clin Invest 100: 1481–1487

    Article  CAS  PubMed  Google Scholar 

  • Coughlin PB (2005) Antiplasmin: the forgotten serpin? FEBS J 272: 4852–4857

    Article  CAS  PubMed  Google Scholar 

  • Crippa MP (2007) Urokinase-type plasminogen activator. Int J Biochem Cell Biol 39: 690–694

    Article  CAS  PubMed  Google Scholar 

  • Declerck PJ, De MM, Alessi MC et al. (1988) Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma. Identification as a multimeric form of S protein (vitronectin). J Biol Chem 263: 15454–15461

    CAS  PubMed  Google Scholar 

  • Dellas C, Loskutoff DJ (2005) Historical analysis of PAI-1 from its discovery to its potential role in cell motility and disease. Thromb Haemost 93: 631–640

    CAS  PubMed  Google Scholar 

  • Ecke S, Geiger M, Binder BR (1992) Glycosaminoglycans regulate the enzyme specificity of protein C inhibitor. Ann N Y Acad Sci 667: 84–86

    Article  CAS  PubMed  Google Scholar 

  • Ehrlich HJ, Gebbink RK, Keijer J et al. (1990) Alteration of serpin specificity by a protein cofactor. Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J Biol Chem 265: 13029–13035

    CAS  PubMed  Google Scholar 

  • Felez J, Chanquia CJ, Fabregas P et al. (1993) Competition between plasminogen and tissue plasminogen activator for cellular binding sites. Blood 82: 2433–2441

    CAS  PubMed  Google Scholar 

  • Francis CW (2002) Plasminogen activator inhibitor-1 levels and polymorphisms. Arch Pathol Lab Med 126: 1401–1404

    CAS  PubMed  Google Scholar 

  • Geiger M (2007) Protein C inhibitor, a serpin with functions in-and outside vascular biology. Thromb Haemost 97: 343–347

    CAS  PubMed  Google Scholar 

  • Geiger M, Heeb MJ, Binder BR et al. (1988) Competition of activated protein C and urokinase for a heparin-dependent inhibitor. FASEB J 2: 2263–2267

    CAS  PubMed  Google Scholar 

  • Hajjar KA, Jacovina AT, Chacko J (1994) An endothelial cell receptor for plasminogen/tissue plasminogen activator. I. Identity with annexin II. J Biol Chem 269: 21191–21197

    CAS  PubMed  Google Scholar 

  • Herren T, Burke TA, Das R et al. (2006) Identification of histone H2B as a regulated plasminogen receptor. Biochemistry 45: 9463–9474

    Article  CAS  PubMed  Google Scholar 

  • Irigoyen JP, Munoz-Canoves P, Montero L et al. (1999) The plasminogen activator system: biology and regulation. Cell Mol Life Sci 56: 104–132

    Article  CAS  PubMed  Google Scholar 

  • Jenkins GR, Seiffert D, Parmer RJ et al. (1997) Regulation of plasminogen gene expression by interleukin-6. Blood 89: 2394–2403

    CAS  PubMed  Google Scholar 

  • Koshelnick Y, Ehart M, Hufnagl P et al. (1997) Urokinase receptor is associated with the components of the JAK1/STAT1 signaling pathway and leads to activation of this pathway upon receptor clustering in the human kidney epithelial tumor cell line TCL-598. J Biol Chem 272: 28563–28567

    Article  CAS  PubMed  Google Scholar 

  • Lambers JW, Cammenga M, Konig BW et al. (1987) Activation of human endothelial cell-type plasminogen activator inhibitor (PAI-1) by negatively charged phospholipids. J Biol Chem 262: 17492–17496

    CAS  PubMed  Google Scholar 

  • Lawrence DA, Loskutoff DJ (1986) Inactivation of plasminogen activator inhibitor by oxidants. Biochemistry 25: 6351–6355

    Article  CAS  PubMed  Google Scholar 

  • Lengyel E, Wang H, Stepp E et al. (1996) Requirement of an upstream AP-1 motif for the constitutive and phorbol ester-inducible expression of the urokinase-type plasminogen activator receptor gene. J Biol Chem 271: 23176–23184

    Article  CAS  PubMed  Google Scholar 

  • Malleier JM, Oskolkova O, Bochkov V et al. (2007) Regulation of protein C inhibitor (PCI) activity by specific oxidized and negatively charged phospholipids. Blood 109: 4769–4776

    Article  CAS  PubMed  Google Scholar 

  • Marlar RA, Griffin JH (1980) Deficiency of protein C inhibitor in combined factor V/VIII deficiency disease. J Clin Invest 66: 1186–1189

    Article  CAS  PubMed  Google Scholar 

  • Mazzieri R, Blasi F (2005) The urokinase receptor and the regulation of cell proliferation. Thromb Haemost 93: 641–646

    CAS  PubMed  Google Scholar 

  • Medcalf RL (2007) Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J Thromb Haemost 5Suppl 1: 132–142

    Article  CAS  PubMed  Google Scholar 

  • Medcalf RL, Stasinopoulos SJ (2005) The undecided serpin. The ins and outs of plasminogen activator inhibitor type 2. FEBS J 272: 4858–4867

    Article  CAS  PubMed  Google Scholar 

  • Meroni G, Buraggi G, Mantovani R et al. (1996) Motifs resembling hepatocyte nuclear factor 1 and activator protein 3 mediate the tissue specificity of the human plasminogen gene. Eur J Biochem 236: 373–382

    Article  CAS  PubMed  Google Scholar 

  • Miles LA, Dahlberg CM, Plescia J et al. (1991) Role of cell-surface lysines in plasminogen binding to cells: identification of alpha-enolase as a candidate plasminogen receptor. Biochemistry 30: 1682–1691

    Article  CAS  PubMed  Google Scholar 

  • Montuori N, Visconte V, Rossi G et al. (2005) Soluble and cleaved forms of the urokinase-receptor: degradation products or active molecules?3. Thromb Haemost 93: 192–198

    CAS  PubMed  Google Scholar 

  • Mosnier LO, Bouma BN (2006) Regulation of fibrinolysis by thrombin activatable fibrinolysis inhibitor, an unstable carboxypeptidase B that unites the pathways of coagulation and fibrinolysis. Arterioscler Thromb Vasc Biol 26: 2445–2453

    Article  CAS  PubMed  Google Scholar 

  • Myles T, Nishimura T, Yun TH et al. (2003) Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. J Biol Chem 278: 51059–51067

    Article  CAS  PubMed  Google Scholar 

  • Naldini L, Vigna E, Bardelli A et al. (1995) Biological activation of pro-HGF (hepatocyte growth factor) by urokinase is controlled by a stoichiometric reaction. J Biol Chem 270: 603–611

    Article  CAS  PubMed  Google Scholar 

  • Nishimura T, Myles T, Piliponsky AM et al. (2007) Thrombin activatable procarboxypeptidase B regulates activated complement C5a in vivo. Blood 109: 1992–1997

    Article  CAS  PubMed  Google Scholar 

  • Petersen TE, Martzen MR, Ichinose A et al. (1990) Characterization of the gene for human plasminogen, a key proenzyme in the fibrinolytic system. J Biol Chem 265: 6104–6111

    CAS  PubMed  Google Scholar 

  • Plesner T, Ralfkiaer E, Wittrup M et al. (1994) Expression of the receptor for urokinase-type plasminogen activator in normal and neoplastic blood cells and hematopoietic tissue. Am J Clin Pathol 102: 835–841

    CAS  PubMed  Google Scholar 

  • Silverman GA, Bird PI, Carrell RW et al. (2001) The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem 276: 33293–33296

    Article  CAS  PubMed  Google Scholar 

  • Soravia E, Grebe A, De LP et al. (1995) A conserved TATA-less proximal promoter drives basal transcription from the urokinase-type plasminogen activator receptor gene. Blood 86: 624–635

    CAS  PubMed  Google Scholar 

  • Stefansson S, Muhammad S, Cheng XF et al. (1998) Plasminogen activator inhibitor-1 contains a cryptic high affinity binding site for the low density lipoprotein receptor-related protein. J Biol Chem 273: 6358–6366

    Article  CAS  PubMed  Google Scholar 

  • Stump DC, Thienpont M, Collen D (1986) Purification and characterization of a novel inhibitor of urokinase from human urine. Quantitation and preliminary characterization in plasma. J Biol Chem 261: 12759–12766

    CAS  PubMed  Google Scholar 

  • Suzuki K, Nishioka J, Hashimoto S (1983) Protein C inhibitor. Purification from human plasma and characterization. J Biol Chem 258: 163–168

    CAS  PubMed  Google Scholar 

  • Vaughan DE (2005) PAI-1 and atherothrombosis. J Thromb Haemost 3: 1879–1883

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Prorok M, Bretthauer RK et al. (1997) Serine-578 is a major phosphorylation locus in human plasma plasminogen. Biochemistry 36: 8100–8106

    Article  CAS  PubMed  Google Scholar 

  • Wei Y, Waltz DA, Rao N et al. (1994) Identification of the urokinase receptor as an adhesion receptor for vitronectin. J Biol Chem 269: 32380–32388

    CAS  PubMed  Google Scholar 

  • Zechmeister-Machhart M, Hufnagl P, Uhrin P et al. (1996) Molecular cloning and tissue distribution of mouse protein C inhibitor (PCI). Immunopharmacology 32: 96–98

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Geiger, M. (2010). Komponenten des fibrinolytischen Systems. In: Pötzsch, B., Madlener, K. (eds) Hämostaseologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01544-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01544-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01543-4

  • Online ISBN: 978-3-642-01544-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics