Skip to main content

Thrombomodulin-Protein-C-System und Protein Z

  • Chapter
  • 4461 Accesses

Zusammenfassung

Die prokoagulatorischen Mechanismen des Gerinnungssystems werden durch antikoagulatorische Systeme kontrolliert, wobei dem Thrombomodulin-Protein-C-System (TM-PC-System) eine besondere Bedeutung zukommt. Neben einer thrombinabhängigen negativen Rückkopplung der Gerinnungsaktivierung moduliert das TM-PC-System durch rezeptorabhängige Mechanismen zelluläre Funktionen. Das endotheliale TM-PC-System kontrolliert z. B. durch die Aktivierung der EPCR-PAR- Signaltransduktion (EPCR: endothelialer Protein-C-Rezeptor, PAR: proteaseaktivierbarer Rezeptor) und unabhängig von der Gerinnung per se Krankheitsverläufe im Rahmen einer Sepsis oder einer diabetischen Nephropathie. Diese Funktionen des TM-PC-Systems verdeutlichen, dass das Gerinnungssystem nicht nur als Wächter der Hämostase, sondern auch als Modulator der Homöostase verstanden werden muss.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Abeyama K, Stern DM, Ito Y et al. (2005) The N-terminal domain of thrombomodulin sequesters high-mobility group-B1 protein, a novel antiinflammatory mechanism. J Clin Invest 115: 1267–1274

    CAS  PubMed  Google Scholar 

  • Abraham E, Reinhart K, Opal S et al. (2003) Efficacy and safety of tifacogin (recombinant tissue factor pathway inhibitor) in severe sepsis: a randomized controlled trial. Jama 290: 238–247

    Article  CAS  PubMed  Google Scholar 

  • Alt E, Haehnel I, Beilharz C et al. (2000) Inhibition of neointima formation after experimental coronary artery stenting: a new biodegradable stent coating releasing hirudin and the prostacyclin analogue iloprost. Circulation 101: 1453–1458

    CAS  PubMed  Google Scholar 

  • Bajzar L, Kalafatis M, Simioni P et al. (1996) An antifibrinolytic mechanism describing the prothrombotic effect associated with factor VLeiden. J Biol Chem 271: 22949–22952

    Article  CAS  PubMed  Google Scholar 

  • Balazs AB, Fabian AJ, Esmon CT et al. (2006) Endothelial protein C receptor (CD201) explicitly identifies hematopoietic stem cells in murine bone marrow. Blood 107: 2317–2321

    Article  CAS  PubMed  Google Scholar 

  • Bernard GR, Vincent JL, Laterre PF et al. (2001) Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 344: 699–709

    Article  CAS  PubMed  Google Scholar 

  • Bianchi ME, Manfredi AA (2007) High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 220: 35–46

    Article  CAS  PubMed  Google Scholar 

  • Boehme MW, Galle P, Stremmel W (2002) Kinetics of thrombomodulin release and endothelial cell injury by neutrophil derived proteases and oxygen radicals. Immunology 107: 340–349

    Article  CAS  PubMed  Google Scholar 

  • Cheung WM, D’Andrea MR, Andrade-Gordon P et al. (1999) Altered vascular injury responses in mice deficient in protease activated receptor-1. Arterioscler Thromb Vasc Biol 19: 3014–3024

    CAS  PubMed  Google Scholar 

  • Conway EM, Van de Wouwer M, Pollefeyt S et al. (2002) The lectin-like domain of thrombomodulin confers protection from neutrophilmediated tissue damage by suppressing adhesion molecule expression via nuclear factor kappaB and mitogen activated protein kinase pathways. J Exp Med 196: 565–577

    Article  CAS  PubMed  Google Scholar 

  • Dahlback B (1999) Activated protein C resistance and thrombosis: molecular mechanisms of hypercoagulable state due to FVR506Q mutation. Semin Thromb Hemost 25: 273–289

    Article  CAS  PubMed  Google Scholar 

  • Dahlback B, Villoutreix BO (2005) The anticoagulant protein C pathway. FEBS Lett 579: 3310–3316

    Article  PubMed  Google Scholar 

  • Damiano BP, D’Andrea MR, de Garavilla L et al. (1999) Increased expression of protease activated receptor-2 (PAR-2) in balloon-injured rat carotid artery. Thromb Haemost 81: 808–814

    CAS  PubMed  Google Scholar 

  • Esmon CT (1984) Protein C. Prog Hemost Thromb 7: 25–54

    CAS  PubMed  Google Scholar 

  • Esmon CT (2003) The protein C pathway. Chest 124: 26S–32S

    Article  CAS  PubMed  Google Scholar 

  • Esmon CT, Esmon NL, Harris KW (1982a) Complex formation between thrombin and thrombomodulin inhibits both thrombin-catalyzed fibrin formation and factor V activation. J Biol Chem 257: 7944–7947

    CAS  PubMed  Google Scholar 

  • Esmon NL, Owen WG, Esmon CT (1982b) Isolation of a membranebound cofactor for thrombin-catalyzed activation of protein C. J Biol Chem 257: 859–864

    CAS  PubMed  Google Scholar 

  • Feistritzer C, Riewald M (2005) Endothelial barrier protection by activated protein C through PAR1-dependent sphingosine 1-phosphate receptor-1 crossactivation. Blood 105: 3178–3184

    Article  CAS  PubMed  Google Scholar 

  • Feistritzer C, Mosheimer BA, Kaneider NC et al. (2004) Thrombin affects eosinophil migration via protease activated receptor-1. Int Arch Allergy Immunol 135: 12–16

    Article  CAS  PubMed  Google Scholar 

  • Fernlund P, Stenflo J (1983) Beta-hydroxyaspartic acid in vitamin K-dependent proteins. J Biol Chem 258: 12509–12512

    CAS  PubMed  Google Scholar 

  • Finigan JH, Dudek SM, Singleton PA et al. (2005) Activated protein C mediates novel lung endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation. J Biol Chem 280: 17286–17293

    Article  CAS  PubMed  Google Scholar 

  • Foster D, Davie EW (1984) Characterization of a cDNA coding for human protein C. Proc Natl Acad Sci USA 1984 81: 4766–4770

    Article  CAS  Google Scholar 

  • Glaser CB, Morser J, Clarke JH et al. (1992) Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J Clin Invest 90: 2565–2573

    Article  CAS  PubMed  Google Scholar 

  • Griffin JH, Evatt B, Zimmerman TS et al. (1981) Deficiency of protein C in congenital thrombotic disease. J Clin Invest 68: 1370–1373

    Article  CAS  PubMed  Google Scholar 

  • Grinnell BW, Walls JD, Gerlitz B (1991) Glycosylation of human protein C affects its secretion, processing, functional activities, and activation by thrombin. J Biol Chem 266: 9778–9785

    CAS  PubMed  Google Scholar 

  • Guo H, Liu D, Gelbard H, Cheng T et al. (2004) Activated protein C prevents neuronal apoptosis via protease activated receptors 1 and 3. Neuron 41: 563–572

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Berg DT, Gerlitz B et al. (2007a) Activated protein C suppresses adrenomedullin and ameliorates lipopolysaccharide-induced hypotension. Shock 28: 468–476

    Article  CAS  PubMed  Google Scholar 

  • Gupta A, Rhodes GJ, Berg DT et al. (2007b) Activated protein C ameliorates LPS-induced acute kidney injury and downregulates renal INOS and angiotensin 2. Am J Physiol Renal Physiol 293: F245–254

    Article  CAS  PubMed  Google Scholar 

  • Hamada H, Ishii H, Sakyo K et al. (1995) The epidermal growth factor-like domain of recombinant human thrombomodulin exhibits mitogenic activity for Swiss 3T3 cells. Blood 86: 225–233

    CAS  PubMed  Google Scholar 

  • Hamatake M, Ishida T, Mitsudomi T et al. (1996) Prognostic value and clinicopathological correlation of thrombomodulin in squamous cell carcinoma of the human lung. Clin Cancer Res 2: 763–766

    CAS  PubMed  Google Scholar 

  • Heeb MJ, Cabral KM, Ruan L (2005) Down-regulation of factor IXa in the factor Xase complex by protein Z-dependent protease inhibitor. J Biol Chem 280: 33819–33825

    Article  CAS  PubMed  Google Scholar 

  • Hosaka Y, Higuchi T, Tsumagari M et al. (2000) Inhibition of invasion and experimental metastasis of murine melanoma cells by human soluble thrombomodulin. Cancer Lett 161: 231–240

    Article  CAS  PubMed  Google Scholar 

  • Howley HE, Walker M, Rodger MA (2005) A systematic review of the association between factor V Leiden or prothrombin gene variant and intrauterine growth restriction. Am J Obstet Gynecol 192: 694–708

    Article  CAS  PubMed  Google Scholar 

  • Huang HC, Shi GY, Jiang SJ et al. (2003) Thrombomodulin-mediated cell adhesion: involvement of its lectin-like domain. J Biol Chem 278: 46750–46759

    Article  CAS  PubMed  Google Scholar 

  • Isermann B, Hendrickson SB, Hutley K et al. (2001a) Tissue-restricted expression of thrombomodulin in the placenta rescues thrombomodulin-deficient mice from early lethality and reveals a secondary developmental block. Development 128: 827–838

    CAS  PubMed  Google Scholar 

  • Isermann B, Hendrickson SB, Zogg M et al. (2001b) Endothelium-specific loss of murine thrombomodulin disrupts the protein C anticoagulant pathway and causes juvenile-onset thrombosis. J Clin Invest 108: 537–546

    CAS  PubMed  Google Scholar 

  • Isermann B, Sood R, Pawlinski R et al. (2003) The thrombomodulin-protein C system is essential for the maintenance of pregnancy. Nat Med 9: 331–337

    Article  CAS  PubMed  Google Scholar 

  • Isermann B, Vinnikov IA, Madhusudhan T et al. (2007) Activated protein C protects against diabetic nephropathy by inhibiting endothelial and podocyte apoptosis. Nat Med 13: 1349–1358

    Article  CAS  PubMed  Google Scholar 

  • Ishii S, Mochizuki T, Nagao T et al. (1995) Pharmacokinetics of human activated protein C. 1st communication: plasma concentration and excretion of a lyophilized purified human activated protein C after intravenous administration in the mouse and the rabbit. Arzneimittelforschung 45: 636–644

    CAS  PubMed  Google Scholar 

  • Jalbert LR, Rosen ED, Moons L et al. (1998) Inactivation of the gene for anticoagulant protein C causes lethal perinatal consumptive coagulopathy in mice. J Clin Invest 102: 1481–1488

    Article  CAS  PubMed  Google Scholar 

  • Kaneider NC, Leger AJ, Agarwal A et al. (2007) ‚Role reversal ‘for the receptor PAR1 in sepsis-induced vascular damage. Nat Immunol 8: 1303–1312

    Article  CAS  PubMed  Google Scholar 

  • Kask L, Trouw LA, Dahlback B et al. (2004)The C4b binding protein-protein S complex inhibits the phagocytosis of apoptotic cells. J Biol Chem 279: 23869–23873

    Article  CAS  PubMed  Google Scholar 

  • Kerlin BA, Yan SB, Isermann BH et al. (2003) Survival advantage associated with heterozygous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia. Blood 102: 3085–3092

    Article  CAS  PubMed  Google Scholar 

  • Kerschen EJ, Fernandez JA, Cooley BC et al. (2007) Endotoxemia and sepsis mortality reduction by non-anticoagulant activated protein C. J Exp Med 204: 2439–2448

    Article  CAS  PubMed  Google Scholar 

  • Koyama T, Parkinson JF, Sie P et al. (1991) Different glycoforms of human thrombomodulin. Their glycosaminoglycan-dependent modulatory effects on thrombin inactivation by heparin cofactor II and antithrombin III. Eur J Biochem 198: 563–570

    Article  CAS  PubMed  Google Scholar 

  • Laszik ZG, Zhou XJ, Ferrell GL et al. (2001) Down-regulation of endothelial expression of endothelial cell protein C receptor and thrombomodulin in coronary atherosclerosis. Am J Pathol 159: 797–802

    CAS  PubMed  Google Scholar 

  • Lentz SR, Fernandez JA, Griffin JH et al. (1999) Impaired anticoagulant response to infusion of thrombin in atherosclerotic monkeys associated with acquired defects in the protein C system. Arterioscler Thromb Vasc Biol 19: 1744–1750

    CAS  PubMed  Google Scholar 

  • Li W, Zheng X, Gu JM et al. (2005) Extraembryonic expression of EPCR is essential for embryonic viability. Blood 106: 2716–2722

    Article  CAS  PubMed  Google Scholar 

  • Liaw PC, Esmon CT, Kahnamoui K et al. (2004) Patients with severe sepsis vary markedly in their ability to generate activated protein C. Blood 104: 3958–3964

    Article  CAS  PubMed  Google Scholar 

  • Lin J, August P (2005) Genetic thrombophilias and preeclampsia: a meta-analysis. Obstet Gynecol 105: 182–192

    PubMed  Google Scholar 

  • Liu D, Cheng T, Guo H et al. (2004) Tissue plasminogen activator neurovascular toxicity is controlled by activated protein C. Nat Med 10: 1379–1383

    Article  CAS  PubMed  Google Scholar 

  • Lohi O, Urban S, Freeman M (2004) Diverse substrate recognition mechanisms for rhomboids thrombomodulin is cleaved by Mammalian rhomboids. Curr Biol 14: 236–241

    CAS  PubMed  Google Scholar 

  • Lopez-Sagaseta J, Montes R, Puy C et al. (2007) Binding of factor VIIa to the endothelial cell protein C receptor reduces its coagulant activity. J Thromb Haemost 5: 1817–1824

    Article  CAS  PubMed  Google Scholar 

  • McMullen BA, Fujikawa K, Kisiel W (1983) The occurrence of beta-hydroxyaspartic acid in the vitamin K-dependent blood coagulation zymogens. Biochem Biophys Res Commun 115: 8–14

    Article  CAS  PubMed  Google Scholar 

  • Mehta JL, Chen J, Hermonat PL et al. (2006) Lectin-like, oxidized lowdensity lipoprotein receptor-1 (LOX-1): a critical player in the development of atherosclerosis and related disorders. Cardiovasc Res 69: 36–45

    Article  CAS  PubMed  Google Scholar 

  • Mosnier LO, Gale AJ, Yegneswaran S et al. (2004) Activated protein C variants with normal cytoprotective but reduced anticoagulant activity. Blood 104: 1740–1744

    Article  CAS  PubMed  Google Scholar 

  • Mousa SA (2000) Comparative efficacy of different low-molecular-weight heparins (LMWHs) and drug interactions with LMWH: implications for management of vascular disorders. Semin Thromb Hemost 26(Suppl.1): 39–46

    Article  CAS  PubMed  Google Scholar 

  • Myles T, Nishimura T, Yun TH et al. (2003) Thrombin activatable fibrinolysis inhibitor, a potential regulator of vascular inflammation. J Biol Chem 278: 51059–51067

    Article  CAS  PubMed  Google Scholar 

  • Nelken NA, Soifer SJ, O’Keefe J et al. (1992) Thrombin receptor expression in normal and atherosclerotic human arteries. J Clin Invest 90: 1614–1621

    Article  CAS  PubMed  Google Scholar 

  • Niessen F, Schaffner F, Furlan-Freguia C et al. (2008) Dendritic cell PAR1-S1P3 signalling couples coagulation and inflammation. Nature 452:654–658

    Article  CAS  PubMed  Google Scholar 

  • Norstrom E, Thorelli E, Dahlback B (2002) Functional characterization of recombinant FV Hong Kong and FV Cambridge. Blood 100: 524–530

    Article  CAS  PubMed  Google Scholar 

  • O’Brien PJ, Koi H, Parry S et al. (2003) Thrombin receptors and protease activated receptor-2 in human placentation: receptor activation mediates extravillous trophoblast invasion in vitro. Am J Pathol 163: 1245–1254

    PubMed  Google Scholar 

  • O’Brien LA, Richardson MA, Mehrbod SF et al. (2007) Activated protein C decreases tumor necrosis factor related apoptosis-inducing ligand by an EPCR-independent mechanism involving Egr-1/Erk-1/2 activation. Arterioscler Thromb Vasc Biol 27: 2634–2641

    Article  PubMed  Google Scholar 

  • Ogawa H, Yonezawa S, Maruyama I et al. (2000) Expression of thrombomodulin in squamous cell carcinoma of the lung: its relationship to lymph node metastasis and prognosis of the patients. Cancer Lett 149: 95–103

    Article  CAS  PubMed  Google Scholar 

  • Olivot JM, Estebanell E, Lafay M et al. (2001) Thrombomodulin prolongs thrombin-induced extracellular signal-regulated kinase phosphorylation and nuclear retention in endothelial cells. Circ Res 88: 681–687

    Article  CAS  PubMed  Google Scholar 

  • Ozaki T, Anas C, Maruyama S et al. (2008) Intrarenal administration of recombinant human soluble thrombomodulin ameliorates ischaemic acute renal failure. Nephrol Dial Transplant 23: 110–119

    Article  CAS  PubMed  Google Scholar 

  • Peterson JJ, Rayburn HB, Lager DJ et al. (1999) Expression of thrombomodulin and consequences of thrombomodulin deficiency during healing of cutaneous wounds. Am J Pathol 155: 1569–1575

    CAS  PubMed  Google Scholar 

  • Rey E, Kahn SR, David M, IShrier I (2003) Thrombophilic disorders and fetal loss: a meta-analysis Lancet 361: 901–08

    Article  PubMed  Google Scholar 

  • Rezaie AR, Sun MF, Gailani D (2006) Contributions of basic amino acids in the autolysis loop of factor XIa to serpin specificity. Biochemistry 45: 9427–9433

    Article  CAS  PubMed  Google Scholar 

  • Riewald M, Ruf W (2005) Protease activated receptor-1 signaling by activated protein C in cytokine-perturbed endothelial cells is distinct from thrombin signaling. J Biol Chem 280: 19808–19814

    Article  CAS  PubMed  Google Scholar 

  • Riewald M, Petrovan RJ, Donner A et al. (2002) Activation of endothelial cell protease activated receptor 1 by the protein C pathway. Science 296: 1880–1882

    Article  CAS  PubMed  Google Scholar 

  • Salomaa V, Wu KK (1999) Soluble thrombomodulin as predictor of incident coronary heart disease. Lancet 354: 1646–1647

    Article  CAS  PubMed  Google Scholar 

  • Salomaa V, Matei C, Aleksic N et al. (2001) Cross-sectional association of soluble thrombomodulin with mild peripheral artery disease the ARIC study. Atherosclerosis Risk in Communities. Atherosclerosis 157: 309–314

    Article  CAS  PubMed  Google Scholar 

  • Schenk-Braat EA, Morser J, Rijken DC (2001) Identification of the epidermal growth factor-like domains of thrombomodulin essential for the acceleration of thrombin-mediated inactivation of single-chain urokinase-type plasminogen activator. Eur J Biochem 268: 5562–5569

    Article  CAS  PubMed  Google Scholar 

  • Shi CS, Shi GY, Chang YS et al. (2005) Evidence of human thrombomodulin domain as a novel angiogenic factor. Circulation 111: 1627–1636

    Article  CAS  PubMed  Google Scholar 

  • Shibata M, Kumar SR, Amar A et al. (2001) Anti-inflammatory, antithrombotic, and neuroprotective effects of activated protein C in a murine model of focal ischemic stroke. Circulation 103: 1799–1805

    CAS  PubMed  Google Scholar 

  • Slungaard A, Fernandez JA, Griffin JH et al. (2003) Platelet factor 4 enhances generation of activated protein C in vitro and in vivo. Blood 102: 146–151

    Article  CAS  PubMed  Google Scholar 

  • Sood R, Kalloway S, Mast AE et al. (2005) Thrombophilia and pregnancy failure: feto-maternal interactions in the vascular bed of the placenta. Thromb Res 115(Suppl.1): 92–94

    PubMed  Google Scholar 

  • Sood R, Zogg M, Westrick RJ et al. (2007) Fetal gene defects precipitate platelet-mediated pregnancy failure in factor V Leiden mothers. J Exp Med 204: 1049–1056

    Article  CAS  PubMed  Google Scholar 

  • Tabata M, Sugihara K, Yonezawa S et al. (1997) An immunohistochemical study of thrombomodulin in oral squamous cell carcinoma and its association with invasive and metastatic potential. J Oral Pathol Med 26: 258–264

    Article  CAS  PubMed  Google Scholar 

  • Tabatabai A, Fiehler R, Broze GJ Jr (2001) Protein Z circulates in plasma in a complex with protein Z-dependent protease inhibitor. Thromb Haemost 85: 655–660

    CAS  PubMed  Google Scholar 

  • Tezuka Y, Yonezawa S, Maruyama I et al. (1995) Expression of thrombomodulin in esophageal squamous cell carcinoma and its relationship to lymph node metastasis. Cancer Res 1995 55: 4196–4200

    CAS  Google Scholar 

  • Thorelli E, Kaufman RJ, Dahlback B (1999) Cleavage of factor V at Arg 506 by activated protein C and the expression of anticoagulant activity of factor V. Blood 93: 2552–2558

    CAS  PubMed  Google Scholar 

  • Tohda G, Oida K, Okada Y et al. (1998) Expression of thrombomodulin in atherosclerotic lesions and mitogenic activity of recombinant thrombomodulin in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 18: 1861–1869

    CAS  PubMed  Google Scholar 

  • Tsiang M, Lentz SR, Sadler JE (1992) Functional domains of membranebound human thrombomodulin. EGF-like domains four to six and the serine/threonine-rich domain are required for cofactor activity. J Biol Chem 267: 6164–6170

    CAS  PubMed  Google Scholar 

  • Van de Wouwer M, Plaisance S, De Vriese A et al. (2006) The lectin-like domain of thrombomodulin interferes with complement activation and protects against arthritis. J Thromb Haemost 4: 1813–1824

    Article  PubMed  Google Scholar 

  • Wang W, Nagashima M, Schneider M et al. (2000) Elements of the primary structure of thrombomodulin required for efficient thrombin activable fibrinolysis inhibitor activation. J Biol Chem 275: 22942–22947

    Article  CAS  PubMed  Google Scholar 

  • Warren BL, Eid A, Singer P et al. (2001) Caring for the critically ill patient. High-dose antithrombin III in severe sepsis: a randomized controlled trial. Jama 286: 1869–1878

    Article  CAS  PubMed  Google Scholar 

  • Waugh JM, Li-Hawkins J, Yuksel E et al. (2000) Thrombomodulin overexpression to limit neointima formation. Circulation 102: 332–337

    CAS  PubMed  Google Scholar 

  • Weiler H, Isermann BH (2003) Thrombomodulin. J Thromb Haemost 1: 1515–1524

    Article  CAS  PubMed  Google Scholar 

  • Xue M, Thompson P, Sambrook PN et al. (2006) Activated protein C stimulates expression of angiogenic factors in human skin cells, angiogenesis in the chick embryo and cutaneous wound healing in rodents. Clin Hemorheol Microcirc 34: 153–161

    CAS  PubMed  Google Scholar 

  • Xue M, Campbell D, Jackson CJ (2007) Protein C is an autocrine growth factor for human skin keratinocytes. J Biol Chem 282: 13610–13616

    Article  CAS  PubMed  Google Scholar 

  • Yin ZF, Huang ZF, Cui J et al. (2000) Prothrombotic phenotype of protein Z deficiency. Proc Natl Acad Sci USA 97: 6734–6738

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Weiler-Guettler H, Chen J et al. (1998) Thrombomodulin modulates growth of tumor cells independent of its anticoagulant activity. J Clin Invest 101: 1301–1309

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Tu Y, Lu L et al. (2008) Protein Z-dependent protease inhibitor deficiency produces a more severe murine phenotype than protein Z deficiency. Blood 111: 4973–4978

    Article  CAS  PubMed  Google Scholar 

  • Zivelin A, Griffin JH, Xu X et al. (1997) A single genetic origin for a common Caucasian risk factor for venous thrombosis. Blood 89: 397–402

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vinnikov, I.A., Nawroth, P.P., Isermann, B. (2010). Thrombomodulin-Protein-C-System und Protein Z. In: Pötzsch, B., Madlener, K. (eds) Hämostaseologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01544-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01544-1_26

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01543-4

  • Online ISBN: 978-3-642-01544-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics