Skip to main content

Faktoren V und VIII

  • Chapter
Hämostaseologie
  • 4496 Accesses

Zusammenfassung

Die Gerinnungsfaktoren V (FV) und VIII (FVIII) spielen als Kofaktoren enzymatischer Aktivierungsreaktionen eine zentrale Rolle in der Gerinnungskaskade. Während aktivierter FV (FVa) innerhalb des Prothrombinasekomplexes die Generierung von Thrombin beschleunigt, ermöglicht aktivierter FVIII (FVIIIa) innerhalb des Tenasekomplexes die effektive Bildung von aktiviertem Faktor X (FXa). Neben der prokoagulatorischen Eigenschaft von FVa kommt FV in Form einer entsprechend aktivierten Variante (FVac) eine antikoagulatorische Kofaktorfunktion bei der durch aktiviertes Protein C (APC) vermittelten Inaktivierung von FVIII zu.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Asselta R, Tenchini ML, Duga S (2006) Inherited defects of coagulation factor V: the hemorrhagic side. J Thromb Haemost 4: 26–34

    Article  CAS  PubMed  Google Scholar 

  • Bakker HM, Tans G, Thomassen MC, Yukelson LY et al. (1994) Functional properties of human factor Va lacking the Asp683-Arg709 domain of the heavy chain. J Biol Chem 269: 20662–20667

    CAS  PubMed  Google Scholar 

  • Bukys MA, Orban T, Kim PY et al. (2006) The structural integrity of anion binding exosite I of thrombin is required and sufficient for timely cleavage and activation of factor V and factor VIII. J Biol Chem 281: 18569–18580

    Article  CAS  PubMed  Google Scholar 

  • Castaldo G, D’Argenio V, Nardiello P et al. (2007) Haemophilia A: molecular insights. Clin Chem Lab Med 45: 450–461

    Article  CAS  PubMed  Google Scholar 

  • Church WR, Jernigan RL, Toole J et al. (1984) Coagulation factors V and VIII and ceruloplasmin constitute a family of structurally related proteins. Proc Natl Acad Sci USA 81: 6934–6937

    Article  CAS  PubMed  Google Scholar 

  • Eaton D, Rodriguez H, Vehar GA (1986) Proteolytic processing of human factor VIII. Correlation of specific cleavages by thrombin, factor Xa, and activated protein C with activation and inactivation of factor VIII coagulant activity. Biochemistry 25: 505–512

    Article  CAS  PubMed  Google Scholar 

  • Fay PJ (2004) Activation of factor VIII and mechanisms of cofactor action. Blood Rev 18: 1–15

    Article  PubMed  Google Scholar 

  • Fay PJ (2006) Factor VIII structure and function. Int J Hematol 83: 103–108

    Article  CAS  PubMed  Google Scholar 

  • Fay PJ, Smudzin TM (1992) Characterization of the interaction between the A2 subunit and A1/A3-C1-C2 dimer in human factor VIIIa. J Biol Chem 267: 13246–13250

    CAS  PubMed  Google Scholar 

  • Fay PJ, Smudzin TM, Walker FJ (1991) Activated protein C-catalyzed inactivation of human factor VIII and factor VIIIa. Identification of cleavage sites and correlation of proteolysis with cofactor activity. J Biol Chem 266: 20139–20145

    CAS  PubMed  Google Scholar 

  • Fay PJ, Beattie TL, Regan LM et al. (1996) Model for the factor VIIIa-dependent decay of the intrinsic factor Xase. Role of subunit dissociation and factor IXa-catalyzed proteolysis. J Biol Chem 1996; 271: 6027–6032

    CAS  Google Scholar 

  • Fay PJ, Koshibu K, Mastri M (1999) The A1 and A2 subunits of factor VIIIa synergistically stimulate factor IXa catalytic activity. J Biol Chem 274: 15401–15406

    Article  CAS  PubMed  Google Scholar 

  • Fay PJ, Mastri M, Koszelak ME et al. (2001) Cleavage of factor VIII heavy chain is required for the functional interaction of a2 subunit with factor IXA. J Biol Chem 276: 12434–12439

    Article  CAS  PubMed  Google Scholar 

  • Franchini M, Lippi G (2008) Acquired factor VIII inhibitors. Blood 112: 250–255

    Article  CAS  PubMed  Google Scholar 

  • Gadelha T, Aquino JH, Assunçäo e Silva E et al. (2008) The diversity in clinical presentation of acquired factor V inhibitor. Two case reports. Acta Haematol 119: 108–110

    Article  PubMed  Google Scholar 

  • Giampaolo A, Vulcano F, Macioce G et al. (2005) Factor-V expression in platelets from human megakaryocytic culture. Br J Haematol 128: 108–111

    Article  CAS  PubMed  Google Scholar 

  • Gould WR, Silveira JR, Tracy PB (2004) Unique in vivo modifications of coagulation factor V produce a physically and functionally distinct platelet derived cofactor: characterization of purified platelet derived factor V/Va. J Biol Chem 279: 2383–2393

    Article  CAS  PubMed  Google Scholar 

  • Hamer RJ, Koedam JA, Beeser-Visser NH et al. (1987) Factor VIII binds to von Willebrand factor via its Mr-80,000 light chain. Eur J Biochem 166: 37–43

    Article  CAS  PubMed  Google Scholar 

  • Haya S, Moret A, Cid AR et al. (2007) Inhibitors in haemophilia A: current management and open issues. Haemophilia 13(Suppl5): 52–60

    CAS  PubMed  Google Scholar 

  • Hill-Eubanks DC, Parker CG, Lollar P (1989) Differential proteolytic activation of factor VIII-von Willebrand factor complex by thrombin. Proc Natl Acad Sci USA 86: 6508–6512

    Article  CAS  PubMed  Google Scholar 

  • Hockin MF, Kalafatis M, Shatos M et al. (1997) Protein C activation and factor Va inactivation on human umbilical vein endothelial cells. Arterioscler Thromb Vasc Biol 17: 2765–2775

    CAS  PubMed  Google Scholar 

  • Hoekema L, Nicolaes GA, Hemker HC et al. (1997) Human factor Va1 and factor Va2: properties in the procoagulant and anticoagulant pathways. Biochemistry 36: 3331–3335

    Article  CAS  PubMed  Google Scholar 

  • Hopfner KP, Lang A, Karcher A et al. (1999) Coagulation factor IXa: the relaxed conformation of Tyr99 blocks substrate binding. Structure 7: 989–996

    Article  CAS  PubMed  Google Scholar 

  • Jeimy SB, Tasneem S, Cramer EM et al. (2008) Multimerin 1. Platelets 19: 83–95

    Article  CAS  PubMed  Google Scholar 

  • Jenny RJ, Pittman DD, Toole JJ et al. (1987) Complete cDNA and derived amino acid sequence of human factor V. Proc Natl Acad Sci USA 84: 4846–4850

    Article  CAS  PubMed  Google Scholar 

  • Kalafatis M, Mann KG (2001) The role of the membrane in the inactivation of factor Va by plasmin. Amino acid region 307–348 of factor V plays a critical role in factor Va cofactor function. J Biol Chem 276: 18614–18623

    Article  CAS  PubMed  Google Scholar 

  • Kamphuisen PW, Rosendaal FR, Eikenboom JC et al. (2000) Factor V antigen levels and venous thrombosis: risk profile, interaction with factor V leiden, and relation with factor VIII antigen levels. Arterioscler Thromb Vasc Biol 20: 1382–1386

    CAS  PubMed  Google Scholar 

  • Krishnaswamy S (1990) Prothrombinase complex assembly. Contributions of protein-protein and protein-membrane interactions toward complex formation. J Biol Chem 265: 3708–3718

    CAS  PubMed  Google Scholar 

  • Lapan KA, Fay PJ (1998) Interaction of the A1 subunit of factor VIIIa and the serine protease domain of factor X identified by zero-length cross-linking. Thromb Haemost 80: 418–422

    CAS  PubMed  Google Scholar 

  • Levinson B, Kenwrick S, Lakich D et al. (1990) A transcribed gene in an intron of the human factor VIII gene. Genomics 7:1–11

    Article  CAS  PubMed  Google Scholar 

  • Levinson B, Kenwrick S, Gamel P et al. (1992) Evidence for a third transcript from the human factor VIII gene. Genomics 14: 585–589

    Article  CAS  PubMed  Google Scholar 

  • Leyte A, Verbeet MP, Brodniewicz-Proba T et al. (1989) The interaction between human blood-coagulation factor VIII and von Willebrand factor. Characterization of a high-affinity binding site on factor VIII. Biochem J 257: 679–683

    CAS  PubMed  Google Scholar 

  • Leyte A, van Schijndel HB, Niehrs C et al. (1991) Sulfation of Tyr1680 of human blood coagulation factor VIII is essential for the interaction of factor VIII with von Willebrand factor. J Biol Chem 266: 740–746

    CAS  PubMed  Google Scholar 

  • Lin Y, Yang X, Chevrier MC et al. (2004) Relationships between factor VIII: Ag and factor VIII in recombinant and plasma derived factor VIII concentrates. Haemophilia 10: 459–469

    Article  CAS  PubMed  Google Scholar 

  • Mann KG, Hockin MF, Begin KJ et al. (1997) Activated protein C cleavage of factor Va leads to dissociation of the A2 domain. J Biol Chem 272: 20678–20683

    Article  CAS  PubMed  Google Scholar 

  • Mannucci PM, Duga S, Peyvandi F (2004) Recessively inherited coagulation disorders. Blood 104: 1243–1252

    Article  CAS  PubMed  Google Scholar 

  • Mathur A, Zhong D, Sabharwal AK et al. (1997) Interaction of factor IXa with factor VIIIa. Effects of protease domain Ca2+ binding site, proteolysis in the autolysis loop, phospholipid, and factor X. J Biol Chem 272: 23418–23426

    Article  CAS  PubMed  Google Scholar 

  • Michnick DA, Pittman DD, Wise RJ et al. (1994) Identification of individual tyrosine sulfation sites within factor VIII required for optimal activity and efficient thrombin cleavage. J Biol Chem 269: 20095–20102

    CAS  PubMed  Google Scholar 

  • MonkoviĆ DD, Tracy PB (1990) Functional characterization of human platelet-released factor V and its activation by factor Xa and thrombin. J Biol Chem 265: 17132–17140

    PubMed  Google Scholar 

  • Nesheim ME, Taswell JB, Mann KG (1979) The contribution of bovine Factor V and Factor Va to the activity of prothrombinase. J Biol Chem 254: 10952–10962

    CAS  PubMed  Google Scholar 

  • Newell JL, Fay PJ (2007) Proteolysis at Arg740 facilitates subsequent bond cleavages during thrombin-catalyzed activation of factor VIII. J Biol Chem 282: 25367–25375

    Article  CAS  PubMed  Google Scholar 

  • Nicolaes GA, Dahlbäck B (2002) Factor V and thrombotic disease: description of a janus-faced protein. Arterioscler Thromb Vasc Biol 22: 530–538

    Article  CAS  PubMed  Google Scholar 

  • Nicolaes GA, Villoutreix BO, Dahlbäck B (1999) Partial glycosylation of Asn2181 in human factor V as a cause of molecular and functional heterogeneity. Modulation of glycosylation efficiency by mutagenesis of the consensus sequence for N-linked glycosylation. Biochemistry 38: 13584–13591

    Article  CAS  PubMed  Google Scholar 

  • Nogami K, Shima M, Hosokawa K et al. (1999) Role of factor VIII C2 domain in factor VIII binding to factor Xa. J Biol Chem 274: 31000–31007

    Article  CAS  PubMed  Google Scholar 

  • Nogami K, Shima M, Nishiya K et al. (2002) A novel mechanism of factor VIII protection by von Willebrand factor from activated protein C-catalyzed inactivation. Blood 99: 3993–3998

    Article  CAS  PubMed  Google Scholar 

  • Nogami K, Wakabayashi H, Fay PJ (2003) Mechanisms of factor Xa-catalyzed cleavage of the factor VIIIa A1 subunit resulting in cofactor inactivation. J Biol Chem 278: 16502–16509

    Article  CAS  PubMed  Google Scholar 

  • Norstrøm EA, Steen M, Tran S et al. (2003) Importance of protein S and phospholipid for activated protein C-mediated cleavages in factor Va. J Biol Chem 278: 24904–24911

    Article  PubMed  Google Scholar 

  • O’Brien LM, Mastri M, Fay PJ (2000) Regulation of factor VIIIa by human activated protein C and protein S: inactivation of cofactor in the intrinsic factor Xase. Blood 95: 1714–1720

    PubMed  Google Scholar 

  • Oldenburg J, El-Maarri O (2006) New insight into the molecular basis of hemophilia A. Int J Hematol 83: 96–102

    Article  CAS  PubMed  Google Scholar 

  • Oldenburg J, Pavlova A (2006) Genetic risk factors for inhibitors to factors VIII and IX. Haemophilia 12(Suppl.6): 15–22

    Article  CAS  PubMed  Google Scholar 

  • Omar MN, Mann KG (1987) Inactivation of factor Va by plasmin. J Biol Chem 262: 9750–9755

    CAS  PubMed  Google Scholar 

  • Parker ET, Doering CB, Lollar P (2006) A1 subunit-mediated regulation of thrombin activated factor VIII A2 subunit dissociation. J Biol Chem 281: 13922–13930

    Article  CAS  PubMed  Google Scholar 

  • Pieters J, Lindhout T, Hemker HC (1989) In situ-generated thrombin is the only enzyme that effectively activates factor VIII and factor V in thromboplastin activated plasma. Blood 74: 1021–1024

    CAS  PubMed  Google Scholar 

  • Pittman DD, Tomkinson KN, Michnick D et al. (1994) Posttranslational sulfation of factor V is required for efficient thrombin cleavage and activation and for full procoagulant activity. Biochemistry 33: 6952–6959

    Article  CAS  PubMed  Google Scholar 

  • Rawala-Sheikh R, Ahmad SS, Ashby B et al. (1990) Kinetics of coagulation factor X activation by platelet-bound factor IXa. Biochemistry 29: 2606–2611

    Article  CAS  PubMed  Google Scholar 

  • Rosing J, Tans G (1997) Factor V Int J Biochem Cell Biol 29: 1123–1126

    Article  CAS  Google Scholar 

  • Rosing J, Tans G, Govers-Riemslag JW et al. (1980) The role of phospholipids and factor Va in the prothrombinase complex. J Biol Chem 255: 274–283

    CAS  PubMed  Google Scholar 

  • Saenko EL, Scandella D (1997) The acidic region of the factor VIII light chain and the C2 domain together form the high affinity binding site for von willebrand factor. J Biol Chem 272: 18007–18014

    Article  CAS  PubMed  Google Scholar 

  • Schambeck CM (2007) The Janus face of coagulation factors. High levels, high thromboembolic risk? Hamostaseologie 27: 268–272

    CAS  PubMed  Google Scholar 

  • Segers K, Dahlbäck B, Nicolaes GA (2007) Coagulation factor V and thrombophilia: background and mechanisms. Thromb Haemost 98: 530–542

    CAS  PubMed  Google Scholar 

  • Shen L, Dahlbäck B (1994) Factor V and protein S as synergistic cofactors to activated protein C in degradation of factor VIIIa. J Biol Chem 269: 18735–18738

    CAS  PubMed  Google Scholar 

  • Steen M, Tran S, Autin L et al. (2008) Mapping of the factor Xa binding site on factor Va by site-directed mutagenesis. J Biol Chem 283: 20805–20812

    Article  CAS  PubMed  Google Scholar 

  • Stoilova-McPhie S, Villoutreix BO, Mertens K et al. (2002) 3-Dimensional structure of membrane-bound coagulation factor VIII: modeling of the factor VIII heterodimer within a 3-dimensional density map derived by electron crystallography. Blood 99: 1215–1223

    Article  CAS  PubMed  Google Scholar 

  • Streiff MB, Ness PM (2002) Acquired FV inhibitors: a needless iatrogenic complication of bovine thrombin exposure. Transfusion 42: 18–26

    Article  PubMed  Google Scholar 

  • Suehiro Y, Veljkovic DK, Fuller N et al. (2005) Endocytosis and storage of plasma factor V by human megakaryocytes. Thromb Haemost 94: 585–592

    CAS  PubMed  Google Scholar 

  • Thompson AR (2003) Structure and function of the factor VIII gene and protein. Semin Thromb Hemost 2911–2922

    Google Scholar 

  • Thorelli E (1999) Mechanisms that regulate the anticoagulant function of coagulation factor V. Scand J Clin Lab Invest Suppl 229: 19–26

    Article  CAS  PubMed  Google Scholar 

  • Tracy PB, Eide LL, Bowie EJ et al. (1982) Radioimmunoassay of factor V in human plasma and platelets. Blood 60: 59–63

    CAS  PubMed  Google Scholar 

  • Tran S, Norstrøm E, Dahlbäck B (2008) Effects of prothrombin on the individual activated protein C-mediated cleavages of coagulation factor Va. J Biol Chem 283:6648–6655

    Article  CAS  PubMed  Google Scholar 

  • Tuddenham EG, Lane RS, Rotblat F et al. (1982) Response to infusions of polyelectrolyte fractionated human factor VIII concentrate in human haemophilia A and von Willebrand’s disease. Br J Haematol 52: 259–267

    Article  CAS  PubMed  Google Scholar 

  • Váradi K, Rosing J, Tans G et al. (1995) Influence of factor V and factor Va on APC-induced cleavage of human factor VIII. Thromb Haemost 73: 730–731

    PubMed  Google Scholar 

  • Varfaj F, Neuberg J, Jenkins PV et al. (2006) Role of P1 residues Arg336 and Arg562 in the activated-Protein-C-catalysed inactivation of Factor VIIIa. Biochem J 396: 355–362

    Article  CAS  PubMed  Google Scholar 

  • Vehar GA, Keyt B, Eaton D, Rodriguez et al. (1984) Structure of human factor VIII. Nature 312: 337–342

    Article  CAS  PubMed  Google Scholar 

  • Viel KR, Machiah DK, Warren DM et al. (2007) A sequence variation scan of the coagulation factor VIII (FVIII) structural gene and associations with plasma FVIII activity levels. Blood 109: 3713–3724

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, McGee B, Yamaoka JS et al. (2006) Combined deficiency of factor V and factor VIII is due to mutations in either LMAN1 or MCFD2. Blood 107: 1903–1907

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Müller, J. (2010). Faktoren V und VIII. In: Pötzsch, B., Madlener, K. (eds) Hämostaseologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01544-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01544-1_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01543-4

  • Online ISBN: 978-3-642-01544-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics