Skip to main content

Vitamin-K-abhängige Gerinnungsfaktoren

  • Chapter
Hämostaseologie

Zusammenfassung

Gemeinsames Merkmal der prokoagulatorischen Gerinnungsfaktoren VII, IX, X und II ist die posttranslationale γ-Carboxylierung von Glutaminsäureresten. Dieser Stoffwechselprozess erfolgt Vitamin-K-abhängig in der Leber. Die sezernierten Gerinnungsfaktoren zirkulieren im Blut als inaktive Proenzyme. Sie werden nach Bindung an negativ geladene Oberflächen durch proteolytische Spaltung im Rahmen der Gerinnungsaktivierung in die aktiven Serinproteasen überführt. Aufgrund von Mutationen oder Mangelerscheinungen dieser Faktoren kommt es zu Störungen im plasmatischen Gerinnungssystem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  • Altieri DC (1993) Coagulation assembly on leukocytes in transmembrane signaling and cell adhesion. Blood 81: 569–579

    CAS  PubMed  Google Scholar 

  • Armentano D, Thompson AR, Darlington G et al. (1990) Expression of human factor IX in rabbit hepatocytes by retrovirus-mediated gene transfer: potential for gene therapy of hemophilia B. Proc Natl Acad Sci USA 87: 6141–6145

    Article  CAS  PubMed  Google Scholar 

  • Baglia FA, Badellino KO, Li CQ et al. (2002) Factor XI binding to the platelet glycoprotein Ib-IX-V complex promotes factor XI activation by thrombin. J Biol Chem 277: 1662–1668

    Article  CAS  PubMed  Google Scholar 

  • Bauer KA (2008) New anticoagulants. Curr Opin Hematol 15: 509–515

    Article  CAS  PubMed  Google Scholar 

  • Becker RC, Rusconi C, Sullenger B (2005) Nucleic acid aptamers in therapeutic anticoagulation. Technology, development and clinical application. Thromb Haemost 93: 1014–1020

    CAS  PubMed  Google Scholar 

  • Bhattacharjee G, Ahamed J, Pawlinski R et al. (2008) Factor Xa binding to annexin 2 mediates signal transduction via protease-activated receptor 1. Circ Res 102: 457–464

    Article  CAS  PubMed  Google Scholar 

  • Bode W (2005) The structure of thrombin, a chameleon-like proteinase. J Thromb Haemost 3: 2379–2388

    Article  CAS  PubMed  Google Scholar 

  • Bowen DJ (2002) Haemophilia A and haemophilia B: molecular insights. Mol Pathol 55: 127–144

    Article  CAS  PubMed  Google Scholar 

  • Chan JCY, Carmeliet P, Moons L et al. (1999) Factor VII deficiency rescues the intrauterine lethality in mice associated with a tissue factor pathway inhibitor deficit. J Clin Invest 103: 475–482

    Article  CAS  PubMed  Google Scholar 

  • Cheung WF, van den Born J, Köhn K et al. (1996) Identification of the endothelial cell binding site for factor IX. Proc Natl Acad Sci USA 93: 11068–11073

    Article  CAS  PubMed  Google Scholar 

  • Choi-Miura NH, Takahashi K, Yoda M et al. (2001) Proteolytic activation and inactivation of the serine protease activity of plasma hyaluronan binding protein. Biol Pharm Bull 24: 448–452

    Article  CAS  PubMed  Google Scholar 

  • Corral J, González-Conejero R, Hernández-Espinosa D, Vicente V (2007) Protein Z/Z-dependent protease inhibitor (PZ/ZPI) anticoagulant system and thrombosis. Br J Haematol 137: 99–108

    Article  CAS  PubMed  Google Scholar 

  • Coughlin SR (2005) Protease-activated receptors in hemostasis, thrombosis and vascular biology. J Thromb Haemost 3: 1800–1814

    Article  CAS  PubMed  Google Scholar 

  • Dahlbäck B, Villoutreix BO (2005) Regulation of blood coagulation by the protein C anticoagulant pathway: novel insights into structurefunction relationships and molecular recognition. Arterioscler Thromb Vasc Biol 25: 1311–1320

    Article  PubMed  Google Scholar 

  • Davie EW (1995) Biochemical and molecular aspects of the coagulation cascade. Thromb Haemost 74: 1–6

    CAS  PubMed  Google Scholar 

  • Dewerchin M, Liang Z, Moons L et al. (2000) Blood coagulation factor X deficiency causes partial embryonic lethality and fatal neonatal bleeding in mice. Thromb Haemost 83: 185–190

    CAS  PubMed  Google Scholar 

  • Engelmann B, Luther T, Müller I (2003) Intravascular tissue factor pathway—a model for rapid initiation of coagulation within the blood vessel. Thromb Haemost 89: 3–8

    CAS  PubMed  Google Scholar 

  • Esmon CT (2003) Inflammation and thrombosis. J Thromb Haemost 1: 1343–1348

    Article  CAS  PubMed  Google Scholar 

  • Esmon CT (2006) The endothelial protein C receptor. Curr Opin Hematol 13: 382–385

    Article  CAS  PubMed  Google Scholar 

  • Fuentes-Prior P, Noeske-Jungblut C, Donner P et al. (1997) Structure of the thrombin complex with triabin, a lipocalin-like exosite binding inhibitor derived from a triatomine bug. Proc Natl Acad Sci USA 94: 11845–11850

    Article  CAS  PubMed  Google Scholar 

  • Greinacher A, Warkentin TE (2008) The direct thrombin inhibitor hirudin. Thromb Haemost 99: 819–829

    CAS  PubMed  Google Scholar 

  • Harenberg J, Wehling M (2008) Current and future prospects for anticoagulant therapy: inhibitors of factor Xa and factor IIa. Semin Thromb Hemost 34: 39–57

    Article  CAS  PubMed  Google Scholar 

  • Hedner U, Ezban M (2008) Tissue factor and factor VIIa as therapeutic targets in disorders of hemostasis. Annu Rev Med 59: 29–41

    Article  CAS  PubMed  Google Scholar 

  • Howard EL, Becker KC, Rusconi CP et al. (2007) Factor IXa inhibitors as novel anticoagulants. Arterioscler Thromb Vasc Biol 27: 722–727

    Article  CAS  PubMed  Google Scholar 

  • Huang M, Rigby AC, Morelli X et al. (2003) Structural basis of membrane binding by Gla domains of vitamin κ-dependent proteins. Nat Struct Biol 10: 751–756

    Article  CAS  PubMed  Google Scholar 

  • Huang Z-F, Higuchi D, Lasky N et al. (1997) Tissue factor pathway inhibitor gene disruption produces intra-uterine lethality in mice. Blood 90: 944–951

    CAS  PubMed  Google Scholar 

  • Huntington JA (2005) Molecular recognition mechanisms of thrombin. J Thromb Haemost 3: 1861–1872

    Article  CAS  PubMed  Google Scholar 

  • Jorgensen MJ, Cantor AB, Furie BC et al. (1987) Recognition site directing vitamin κ-dependent γ-carboxylation resides on the propeptide of factor IX. Cell 48: 185–191

    Article  CAS  PubMed  Google Scholar 

  • Kannemeier C, Feussner A, Stöhr HA et al. (2001) Factor VII and singlechain plasminogen activator activating protease: activation and autoactivation of the proenzyme. Eur J Biochem 268: 3789–3796

    Article  CAS  PubMed  Google Scholar 

  • Kini RM (2005) The intriguing world of prothrombin activators from snake venom. Toxicon 45: 1133–1145

    Article  CAS  PubMed  Google Scholar 

  • Kretz CA, Stafford AR, Fredenburgh JC et al. (2006) HD1, a thrombin-directed aptamer, binds exosite 1 on pro-thrombin with high affinity and inhibits its activation by prothrombinase. J Biol Chem 281: 37477–37485

    Article  CAS  PubMed  Google Scholar 

  • Kundu RK, Sangiorgi F, Wu LY et al. (1998) Targeted inactivation of the coagulation factor IX gene causes hemophilia B in mice. Blood 92: 168–174

    CAS  PubMed  Google Scholar 

  • Lambert T, Recht M, Valentino LA et al. (2007) Reformulated BeneFix: efficacy and safety in previously treated patients with moderately severe to severe haemophilia B. Haemophilia 13: 233–243

    Article  CAS  PubMed  Google Scholar 

  • Lane DA, Philippou H, Huntington JA (2005) Directing thrombin. Blood 106: 2605–2612

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Rhim T, Kim SS (1998) Prothrombin kringle-2 domain has a growth inhibitory activity against basic fibroblast growth factor-stimulated capillary endothelial cells. J Biol Chem 273: 28805–28812

    Article  CAS  PubMed  Google Scholar 

  • Lin HF, Maeda N, Smithies O et al. (1997) A coagulation factor IX-deficient mouse model for human hemophilia B. Blood 90: 3962–3966

    CAS  PubMed  Google Scholar 

  • Mannucci PM, Duga S, Peyvandi F (2004) Recessively inherited coagulation disorders. Blood 104: 1243–1252

    Article  CAS  PubMed  Google Scholar 

  • Maritz-Olivier C, Stutzer C, Jongejan F et al. (2007) Tick anti-hemostatics: targets for future vaccines and therapeutics. Trends Parasitol 23: 397–407

    Article  CAS  PubMed  Google Scholar 

  • Müller I, Klocke A, Alex M et al. (2003) Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. FASEB J 17: 476–478

    PubMed  Google Scholar 

  • Nakazawa F, Kannemeier C, Shibamiya A et al. (2005) Extracellular RNA is a natural cofactor for the (auto-)activation of Factor VII activating protease (FSAP). Biochem J 385: 831–838

    Article  CAS  PubMed  Google Scholar 

  • Neels JG, Bovenschen N, van Zonneveld AJ, Lenting PJ (200) Interaction between factor VIII and LDL receptor-related protein. Modulation of coagulation? Trends Cardiovasc Med 10: 8–14

    Article  Google Scholar 

  • Oldenburg J, Watzka M, Rost S et al. (2007) VKORC1: molecular target of coumarins. J Thromb Haemost 5(Suppl1): 1–6

    Article  CAS  PubMed  Google Scholar 

  • O’Reilly MS, Holmgren L, Shing Y et al. (1994) Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79: 315–328

    Article  PubMed  Google Scholar 

  • Parkinson JF, Koyama T, Bang NU et al. (1992) Thrombomodulin: an anticoagulant cell surface proteoglycan with physiologically relevant glycosaminoglycan moiety. Adv Exp Med Biol 313: 177–188

    CAS  PubMed  Google Scholar 

  • Patthy L (1985) Evolution of the proteases of blood coagulation and fibrinolysis by assembly from modules. Cell 41: 657–663

    Article  CAS  PubMed  Google Scholar 

  • Perry DJ (2002) Factor VII deficiency. Br J Haematol 118: 689–700

    Article  CAS  PubMed  Google Scholar 

  • Philippou H, Adami A, Amersey RA et al. (1997) A novel specific immunoassay for plasma two-chain factor VIIa: investigation of FVIIa levels in normal individuals and in patients with acute coronary syndromes. Blood 89: 767–775

    CAS  PubMed  Google Scholar 

  • Pipe SW (2008) Recombinant clotting factors. Thromb Haemost 99: 840–850

    CAS  PubMed  Google Scholar 

  • Piro O, Broze GJ Jr (2004) Role for the Kunitz-3 domain of tissue factor pathway inhibitor-alpha in cell surface binding. Circulation 110: 3567–3572

    Article  CAS  PubMed  Google Scholar 

  • Poggio M, Tripodi A, Mariani G et al. (1991) Factor VII clotting assay: influence of different thrombo-plastins and factor VII-deficient plasmas. CISMEL Study Group. Thromb Haemost 65: 160–164

    CAS  PubMed  Google Scholar 

  • Ponder KP (2006) Gene therapy for hemophilia. Curr Opin Hematol 13: 301–307

    Article  CAS  PubMed  Google Scholar 

  • Poort SR, Rosendaal FR, Reitsma PH et al. (1996) A common genetic variation in the 3′-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 88: 3698–3703

    CAS  PubMed  Google Scholar 

  • Preissner KT, Seiffert D (1998) Role of vitronectin and its receptors in haemostasis and vascular remodeling. Thromb Res 89: 1–21

    Article  CAS  PubMed  Google Scholar 

  • Rau JC, Beaulieu LM, Huntington JA, Church FC (2007) Serpins in thrombosis, hemostasis and fibrinolysis. J Thromb Haemost 1: 102–115

    Article  Google Scholar 

  • Römisch J (2002) Factor VII activating protease (FSAP): a novel protease in hemostasis. Biol Chem 383: 1119–1124

    Article  PubMed  Google Scholar 

  • Rosen ED, Chan JC, Idusogie E et al. (1997) Mice lacking factor VII develop normally but suffer fatal perinatal bleeding. Nature 390: 290–294

    Article  CAS  PubMed  Google Scholar 

  • Rost S, Fregin A, Ivaskevicius V et al. (2004) Mutations in VKORC1 cause warfarin resistance and multiple coagulation factor deficiency type 2. Nature 427: 537–541

    Article  CAS  PubMed  Google Scholar 

  • Ruf W, Edgington TS (1994) Structural biology of tissue factor, the initiator of thrombogenesis in vivo. FASEB J 8: 385–390

    CAS  PubMed  Google Scholar 

  • Ruf W, Dorfleutner A, Riewald M (2003) Specificity of coagulation factor signaling. J Thromb Haemost 1: 1495–1503

    Article  CAS  PubMed  Google Scholar 

  • Schmidt AE, Bajaj SP (2003) Structure-function relationships in factor IX and factor IXa. Trends Cardiovasc Med 13: 39–45

    Article  CAS  PubMed  Google Scholar 

  • Sevinsky JR, Rao LVM, Ruf W (1996) Ligand-induced protease receptor translocation into caveolae: a mechanism for regulating cell surface proteolysis of the tissue factor-dependent coagulation pathway. J Cell Biol 133: 293–304

    Article  CAS  PubMed  Google Scholar 

  • Sottrup-Jensen L, Zajdel M, Claeys H et al. (1975) Amino-acid sequence of activation cleavage site in plasminogen: homology with “pro„ part of prothrombin. Proc Natl Acad Sci USA 72: 2577–2581

    Article  CAS  PubMed  Google Scholar 

  • Spannagl M, Moessmer G (2006) Global tests of haemostasis. Haemostaseologie 26: 27–37

    CAS  Google Scholar 

  • Sun WY, Witte DP, Degen JL et al. (1998) Prothrombin deficiency results in embryonic and neonatal lethality in mice. Proc Natl Acad Sci USA 95: 7597–7602

    Article  CAS  PubMed  Google Scholar 

  • Sun WY, Coleman MJ, Witte DP et al. (2002) Rescue of prothrombin-deficiency by transgene expression in mice. Thromb Haemost 88: 984–991

    CAS  PubMed  Google Scholar 

  • Toomey JR, Kratzer KE, Lasky NM et al. (1996) Targeted disruption of the murine tissue factor gene results in embryonic lethality. Blood 88: 1583–1587

    CAS  PubMed  Google Scholar 

  • Uprichard J, Perry DJ (2002) Factor X deficiency. Blood Rev 16: 97–110

    Article  PubMed  Google Scholar 

  • Weitz JI, Bates SM (2005) New anticoagulants. J Thromb Haemost 3: 1843–1853

    Article  CAS  PubMed  Google Scholar 

  • Wu Q, Parry G (2007) Hepsin and prostate cancer. Front Biosci 12: 5052–5059

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Deng Y, Luther T et al. (1994) Tissue factor controls the balance of angiogenic and antiangiogenic properties of tumor cells in mice. J Clin Invest 94: 1320–1327

    Article  CAS  PubMed  Google Scholar 

  • Zivelin A, Mor-Cohen R, Kovalsky V et al. (2006) Prothrombin 20210G>A is an ancestral prothrombotic mutation that occurred in whites approximately 24,000 years ago. Blood 107: 4666–4668

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Preissner, K.T. (2010). Vitamin-K-abhängige Gerinnungsfaktoren. In: Pötzsch, B., Madlener, K. (eds) Hämostaseologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01544-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01544-1_17

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01543-4

  • Online ISBN: 978-3-642-01544-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics