Skip to main content

Monozyten und Leukozyten

  • Chapter
Hämostaseologie
  • 4517 Accesses

Zusammenfassung

Monozyten und Leukozyten interagieren mit dem Hämostasesystem über verschiedene Mechanismen. Aktivierte Monozyten und Leukozyten können das plasmatische Gerinnungssystem durch die Expression von Tissue Factor aktivieren. Die daraus resultierende Fibrinbildung trägt dazu bei, den Entzündungsprozess zu begrenzen, und behindert die Ausbreitung von Bakterien und anderen Krankheitserregern. Durch direkten zellulären Kontakt können Monozyten und Leukozyten Endothelzellen aktivieren und eine prokoagulatorische Antwort induzieren. Dies wird durch die Sezernierung von Zytokinen und anderen proinflammatorischen Mediatoren verstärkt, die neben der Endothelzellaktivierung die hepatische Synthese von Gerinnungsfaktoren stimulieren können. Weiterhin sind Monozyten und Leukozyten eine Hauptquelle für die Bildung von an Tissue Factor reichen Mikropartikeln. Diese ermöglichen die Aufrechterhaltung einer basalen Gerinnungsaktivierung, sind in die Gerinnselbildung involviert und spielen wahrscheinlich eine wichtige Rolle in der Pathogenese von thromboembolischen Prozessen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literatur

  1. Bogdanov VY et al. (2003) Alternatively spliced human tissue factor: a circulating, soluble, thrombogenic protein. Nat Med 9(4): 458–462

    Article  CAS  PubMed  Google Scholar 

  2. Guha M, Mackman N (2002) The phosphatidylinositol 3-kinase-Akt pathway limits lipopolysaccharide activation of signaling pathways and expression of inflammatory mediators in human monocytic cells. J Biol Chem 277(35): 32124–32132

    Article  CAS  PubMed  Google Scholar 

  3. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16): 1685–1695

    Article  CAS  PubMed  Google Scholar 

  4. Mackman N (2004) Role of tissue factor in hemostasis, thrombosis, and vascular development. Arterioscler Thromb Vasc Biol 24(6): 1015–1022

    Article  CAS  PubMed  Google Scholar 

  5. Muth H et al. (2005) Differential gene expression in activated monocyte derived macrophages following binding of factor VIIa to tissue factor. Thromb Haemost 94(5): 1028–1034

    CAS  PubMed  Google Scholar 

  6. Napoleone E, Di Santo A, Lorenzet R (1997) Monocytes upregulate endothelial cell expression of tissue factor: a role for cell-cell contact and cross-talk. Blood 89(2): 541–549

    CAS  PubMed  Google Scholar 

  7. Pawlinski R et al. (2004) Role of tissue factor in haemostasis, thrombosis, angiogenesis and inflammation: lessons from low tissue factor mice. Thromb Haemost 92(3): 444–450

    CAS  PubMed  Google Scholar 

  8. Steffel J, Luscher TF, Tanner FC (2006) Tissue factor in cardiovascular diseases: molecular mechanisms and clinical implications. Circulation 113(5): 722–731

    Article  CAS  PubMed  Google Scholar 

  9. Szotowski B et al. (2005) Procoagulant soluble tissue factor is released from endothelial cells in response to inflammatory cytokines. Circ Res 96(12): 1233–1239

    Article  CAS  PubMed  Google Scholar 

  10. Wilcox JN et al. (1989) Localization of tissue factor in the normal vessel wall and in the atherosclerotic plaque. Proc Natl Acad Sci USA 86(8): 2839–2843

    Article  CAS  PubMed  Google Scholar 

  11. Mesri M, Altieri DC (1998) Endothelial Cell Activation by Leukocyte Microparticles. J Immunol 161: 4382–4387

    CAS  PubMed  Google Scholar 

  12. Hugel B, Martinez MC, Kunzelmann C et al. (2005) Membrane microparticles: two sides of the coin. Physiology 20: 22–27

    Article  CAS  PubMed  Google Scholar 

  13. Albanese J, Meterissian S, Kontogiannea M et al. (1998) Biologically active Fas antigen and its cognate ligand are expressed on plasma membrane derived extracellular vesicles. Blood 91:3862–3874

    CAS  PubMed  Google Scholar 

  14. MacKenzie A, Wilson HL, Kiss-Toth E et al. (2001) Rapid secretion of interleukin-1-beta by microvesicle shedding. Immunity 15: 825–835

    Article  CAS  PubMed  Google Scholar 

  15. Fourcade O, Simon MF, Viode C et al. (1995) Secretory phospholipase A2 generates the novel lipid mediator lysophosphatidic acid in membrane microvesicles shed from activated cells. Cell 80: 919–927

    Article  CAS  PubMed  Google Scholar 

  16. Hess C, Sadallah S, Hefti A et al. (1999) Ectosomes released by human neutrophils are specialized functional units. J Immunol 163: 4564–4573

    CAS  PubMed  Google Scholar 

  17. Boulanger CM, Scoazec A, Ebrahimian T et al. (2001) Circulating microparticles from patients with myocardial infarction cause endothelial dysfunction. Circulation 104: 2649–2652

    Article  CAS  PubMed  Google Scholar 

  18. Martin S, Tesse A, Hugel B et al. (2004) Shed membrane particles from T lymphocytes impair endothelial function and regulate endothelial protein expression. Circulation 109: 1653–1659

    Article  PubMed  Google Scholar 

  19. Leroyer AS, Isobe H, Leseche G et al. (2007) Cellular origins and thrombogenic activity of microparticles isolated from human atherosclerotic plaques. J Am Coll Cardiol 49: 772–777

    Article  CAS  PubMed  Google Scholar 

  20. Mesri M, Altieri DC (1999) Leukocyte microparticles stimulate endothelial cell cytokine release and tissue factor induction in a JNK1 signaling pathway. J Biol Chem 274: 23111–23118

    Article  CAS  PubMed  Google Scholar 

  21. Osterud B (2001) The role of platelets in decrypting monocyte tissue factor. Semin Hematol 38: 2–5

    Article  CAS  PubMed  Google Scholar 

  22. Giesen PLA, Rauch U, Bohrmann B et al. (1999) Blood-borne tissue factor: Another view of thrombosis. Prc Nat Acad Sci USA 96: 2311–2315

    Article  CAS  Google Scholar 

  23. Eilertsen KE, Osterud B (2004) Tissue factor: (patho)physiology and cellular biology. Blood Coagul Fibrinolysis 15: 521–538

    CAS  PubMed  Google Scholar 

  24. Afshar-Kharghan V, Thiagarajan P (2006) Leukocyte adhesion and thrombosis. Curr Opin Hematol 13: 34–39

    Article  CAS  PubMed  Google Scholar 

  25. Charo IF, Taubman MB (2004) Chemokines in the pathogenesis of vascular disease. Circ Res 95: 858–866

    Article  CAS  PubMed  Google Scholar 

  26. Schecter AD, Rollins BJ, Zhang YJ et al. (1997) Tissue factor is induced by monocyte chemoattractant protein-1 in human aortic smooth muscle and THP-1 cells. J Biol Chem 272: 28568–28573

    Article  CAS  PubMed  Google Scholar 

  27. Nourshargh S, Krombach F, Dejana E (2006) The role of JAM-A and PECAM-1 in modulating leukocyte infiltration in inflamed and ischemic tissues. J Leukoc Biol 80: 714–718

    Article  CAS  PubMed  Google Scholar 

  28. Ostermann G, Weber KS, Zernecke A et al. (2002) JAM-1 is a ligand of the beta(2) integrin LFA-1 involved in transendothelial migration of leukocytes. Nat Immunol 3: 151–158

    Article  CAS  PubMed  Google Scholar 

  29. Mause SF, von Hundelshausen P, Zernecke A (2005) Platelet microparticles: a transcellular delivery system for RANTES promoting monocyte recruitment on endothelium. Arterioscler Thromb Vasc Biol 25: 1512–1518

    Article  CAS  PubMed  Google Scholar 

  30. Suk K, Cha S (1999) Thrombin-induced interleukin-8 production and its regulation by interferon-gamma and prostaglandin E2 in human monocytic U937 cells. Immunol Lett 67: 223–227

    Article  CAS  PubMed  Google Scholar 

  31. McEver RP, Cummings RD (1997) Perspectives series: cell adhesion in vascular biology. Role of PSGL-1 binding to selectins in leukocyte recruitment. J Clin Invest 100: 485–491

    Article  CAS  PubMed  Google Scholar 

  32. Merten M, Beythien C, Gutensohn K et al. (2005) Sulfatides activate platelets through P-selectin and enhance platelet and platelet-leukocyte aggregation. Arterioscler Thromb Vasc Biol 25: 258–263

    CAS  PubMed  Google Scholar 

  33. Vandendries ER, Furie BC, Furie B (2004) Role of P-selectin and PSGL-1 in coagulation and thrombosis. Thromb Haemost 92: 459–466

    CAS  PubMed  Google Scholar 

  34. Merten M, Thiagarajan P (2000) P-selectin expression on platelets determines size and stability of platelet aggregates. Circulation 102: 1931–1936

    CAS  PubMed  Google Scholar 

  35. Palabrica T, Lobb R, Furie BC et al. (1992) Leukocyte accumulation promoting fibrin deposition is mediated in vivo by P-selectin on adherent platelets. Nature 359: 848–851

    Article  CAS  PubMed  Google Scholar 

  36. Subramaniam M, Frenette PS, Saffaripour S et al. (1996) Defects in hemostasis in P-selectin-deficient mice. Blood 87: 1238–1242

    CAS  PubMed  Google Scholar 

  37. Plescia J, Altieri DC (1996) Activation of Mac-1 (CD11b/CD18)-bound factor X by released cathepsin G defines an alternative pathway of leucocyte initiation of coagulation. Biochem J 319 (Pt3): 873–879

    CAS  PubMed  Google Scholar 

  38. Trumel C, Si-Tahar M, Balloy V et al. (2000) Phosphoinositide 3-kinase inhibition reverses platelet aggregation triggered by the combination of the neutrophil proteinases elastase and cathepsin G without impairing alpha(IIb)beta(3) integrin activation. FEBS Lett 484: 184–188

    Article  CAS  PubMed  Google Scholar 

  39. Vischer UM, Jornot L, Wollheim CB et al. (1995) Reactive oxygen intermediates induce regulated secretion of von Willebrand factor from cultured human vascular endothelial cells. Blood 85: 3164–3172

    CAS  PubMed  Google Scholar 

  40. Weber C, Schober A, Zernecke A (2004) Chemokines: key regulators of mononuclear cell recruitment in atherosclerotic vascular disease. Arterioscler Thromb Vasc Biol 24(11): 1997–2008

    Article  CAS  PubMed  Google Scholar 

  41. Linton MF, Fazio S (2003) Macrophages, inflammation, and atherosclerosis. Int J Obes Relat Metab Disord 27(Suppl 3): S35–S40

    Article  CAS  PubMed  Google Scholar 

  42. Schober A, Weber C (2005) Mechanisms of monocyte recruitment in vascular repair after injury. Antioxid Redox Signal 7(9–10): 1249–1257

    Article  CAS  PubMed  Google Scholar 

  43. von Hundelshausen P, Weber C (2007) Platelets as immune cells: bridging inflammation and cardiovascular disease. Circ Res 100(1): 27–40

    Article  Google Scholar 

  44. Bernhagen J et al. (2007) MIF is a noncognate ligand of CXC chemokine receptors in inflammatory and atherogenic cell recruitment. Nat Med 13(5): 587–596

    Article  CAS  PubMed  Google Scholar 

  45. Hansson GK (2005) Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med 352(16): 1685–1695

    Article  CAS  PubMed  Google Scholar 

  46. Lusis AJ (2000) Atherosclerosis. Nature 407(6801): 233–241

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Weber, C. (2010). Monozyten und Leukozyten. In: Pötzsch, B., Madlener, K. (eds) Hämostaseologie. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01544-1_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01544-1_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01543-4

  • Online ISBN: 978-3-642-01544-1

  • eBook Packages: Medicine (German Language)

Publish with us

Policies and ethics