Skip to main content

Novel Switch Architectures

  • Chapter

Part of the book series: Lecture Notes in Computer Science ((LNCCN,volume 5412))

Abstract

In this paper we discussed different switch architectures. We focus mainly on optical buffering. We investigate an all-optical buffer architecture comprising of cascaded stages of quantum-dot semiconductor optical amplifier- based tunable wavelength converters, at 160 Gb/s. We also propose the optical buffer with multi-wavelength converters based on quantum-dot semiconductor optical amplifiers. We present multistage switching fabrics with optical buffers, where optical buffers are based on fibre delay lines and are located in the first stage. Finally, we describe a photonic asynchronous packet switch and show that the employment of a few optical buffer stages to complement the electronic ones significantly improves the switch performance. We also propose two asynchronous optical packet switching node architectures, where an efficient contention resolution is based on controllable optical buffers and tunable wavelength converters TWCs.

The original version of the book was revised: The copyright line was incorrect. The Erratum to the book is available at DOI: 10.1007/978-3-642-01524-3_13

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. El-Bawab, T.S.: Optical Switching. Springer, Heidelberg (2006)

    Book  Google Scholar 

  2. Ramaswami, R., Sivarajan, K.N.: Optical Networks. A Practical Perspective, 2nd edn. Morgan Kaufmann, San Francisco (2002)

    Google Scholar 

  3. O’Mahony, M.J., Simeonidou, D., Hunter, D.K., Tzanakaki, A.: The application of optical packet switching in future communication networks. IEEE Communications Magazine 39(3), 128–135 (2001)

    Article  Google Scholar 

  4. Xu, L., Perros, H.G., Rouskas, G.: Techniques for optical packet switching and optical burst switching. IEEE Communications Magazine 39(1), 136–142 (2001)

    Article  Google Scholar 

  5. Yao, S., Yoo, S.J.B., Mukherjee, B.: All-optical packet switching for metropolitan area networks: Opportunities and challenges. IEEE Communications Magazine 39(3), 142–148 (2001)

    Article  Google Scholar 

  6. Bjørnstad, S., Stol, N., Hjelme, D.R.: An Optical Packet Switch Design with Shared Electronic Buffering and Low Bit Rate Add/Drop Inputs. In: Proceedings of International Conference on Transparent Optical Networks, pp. 69–72 (2002)

    Google Scholar 

  7. Yiannopolous, K., Vlachos, K., Varvarigos, E.: The Multiple Input Buffer and Shared Buffer Architectures for Asynchronous Optical Burst Switching Network. IEEE/OSA J. Lightwave Technology 25(6), 1379–1389 (2007)

    Article  Google Scholar 

  8. Hunter, D.K., Chia, M.C., Andonovic, I.: Buffering in optical packet switches. IEEE/OSA J. Lightwave Technology 16(12), 2081–2094 (1998)

    Article  Google Scholar 

  9. Chia, M.C., Hunter, D.K., Andonovic, I., Ball, P., Wright, I., Ferguson, S.P., Gulid, K.M., O’Mahony, M.J.: Packet Loss and Delay Performance of Feedback and Feed-Forward Arrayed-Waveguide Gratings-Based Optical Packet Switches With WDM Inputs–Outputs. IEEE/OSA J. Lightwave Technology 19(9), 1241–1254 (2001)

    Article  Google Scholar 

  10. Gauger, C.M.: Dimensioning of FDL buffers for optical burst switching nodes. In: 6th IFIP Working Conference on Optical Network Design and Modeling (ONDM 2002), Torino (2002)

    Google Scholar 

  11. Enachescu, M., Ganjali, Y., Goel, A., McKeown, N., Roughgarden, T.: Routers with very small buffers. In: Proceedings of IEEE INFOCOM, pp. 1–11 (2006)

    Google Scholar 

  12. Berg, T., Bischoff, S., Magnusdottir, I., Mork, J.: Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices. IEEE Photon. Technol. Lett. 13, 541–543 (2000)

    Article  Google Scholar 

  13. Uskov, A.V., et al.: On high speed cross-gain modulation without pattern effects in quantum-dot semiconductor optical amplifiers. Optics Communications 227, 363–369 (2003)

    Article  Google Scholar 

  14. Akiyama, T., Kuwatsuka, H., Simoyama, T., Nakata, Y., Mukai, K., Sugawara, M., Wada, O., Ishikawa, H.: Application of spectral-hole burning in the inhomogeneously broadened gain of self-assembled quantum dots to a multi wavelength-channel nonlinear optical device. IEEE Photon. Technol. Lett. 12(10), 1301–1303 (2000)

    Article  Google Scholar 

  15. Chikama, T., Onaka, H., Kuroyanagi, S.: Photonic Networking Using Optical Add Drop Multiplexers and Optical Cross-Connects. FUJITSU Sci. Tech. J. 35(1), 46–55 (1999)

    Google Scholar 

  16. Varvarigos, E.: The “packing” and the "scheduling packet" switch architectures for almost all-optical lossless networks. IEEE/OSA J. Lightwave Technology 16(10), 1757–1767 (1998)

    Article  Google Scholar 

  17. Spyropoulou, M., et al.: 160 Gb/s simulation of a quantum-dot semiconductor optical amplifier based optical buffer. In: 11th IFIP Working Conference on Optical Network Design and Modeling (ONDM), pp. 107–116 (2007)

    Google Scholar 

  18. Lee, H., Yoon, H., Kim, Y., Jeong, J.: Theoretical Study of Frequency Chirping and Extinction Ratio of Wavelength-Converted Optical Signals by XGM and XPM using SOA’s. IEEE J. of Quantum Electronics 35, 1213–1219 (1999)

    Article  Google Scholar 

  19. Sugawara, M., et al.: Quantum-dot semiconductor optical amplifiers for high-bit-rate signal processing up to 160 Gb/s and a new scheme of 3R regenerators. Meas. Sci. Technol. 13, 1683–1691 (2002)

    Article  Google Scholar 

  20. Sugawara, M., et al.: Effect of homogeneous broadening of optical gain on lasing spectra in self-assembled InxGa1-xAs/GaAs quantum dot lasers. Physical Review B 61, 7595–7603 (2000)

    Article  Google Scholar 

  21. Massoubre, D.: High Speed Switching Contrast Quantum Well Saturable Absorber for 160Gb/s Operation. In: Proceedings of Lasers & Electro-Optics (CLEO), pp. 1593–1595 (2005)

    Google Scholar 

  22. Girardin, F., Guekos, G.: Gain Recovery of Bulk Semiconductor optical Amplifiers. IEEE Photon. Technol. Lett. 10, 784–786 (1998)

    Article  Google Scholar 

  23. Yazaki, T., et al.: Device length dependency of cross gain modulation and gain recovery time in semiconductor optical amplifier. In: Proceedings of the Conference on Indium Phosphide and related materials, pp. 510–512 (2003)

    Google Scholar 

  24. Akiyama, T., et al.: Pattern-effect free amplification and cross-gain modulation achieved by ultra-fast gain nonlinearity in quantum-dot semiconductor optical amplifiers. Phys. Stat. Sol (b) 238, 301–304 (2003)

    Article  Google Scholar 

  25. Pleumeekers, J.L., Leuthold, J., Kauer, M., Bernasconi, P., Burrus, C.A., Cappuzzo, M., Chen, E., Gomez, L., Laskowski, E.: All-optical wavelength conversion and broadcasting to eight separate channels by a single semiconductor optical amplifier delay interferometer. In: Proceedings of Optical Fibre Conference, pp. 596–597 (2002)

    Google Scholar 

  26. Vlachos, K., Kabaciński, W., Węclewski, S.: New Architectures for Optical Packet Switching using QD-SOAs for Multi-Wavelength Buffering. In: International Workshop on High Performance Switching and Routing, Shanghai (2008)

    Google Scholar 

  27. De Zhong, W., Tucker, R.S.: Wavelength Routing-Based Photonic Packet Buffers and Their Applications in Photonic Switching Systems. IEEE/OSA J. Lightwave Technology 16(10), 1737–1745 (1998)

    Article  Google Scholar 

  28. Pavon-Mariño, P., Garcia-Haro, J., Jajszczyk, A.: Parallel Desynchronized Block Matching: A Feasible Scheduling Algorithm for the Input-Buffered Wavelength-Routed Switch. Computer Networks 51(15), 4270–4283 (2007)

    Article  Google Scholar 

  29. Clos, C.: A Study of Non-Blocking Switching Networks. Bell Sys. Tech. Jour., 406–424 (1953)

    Google Scholar 

  30. Cheyns, J., Develder, C., Van Breusegem, V., Colle, D., De Turck, F., Lagasse, P., Pickavet, M., Demesteer, P.: Clos Lives On in Optical Packet Switching. IEEE Communication Magazine 42(2), 114–121 (2004)

    Article  Google Scholar 

  31. Chao, H.J., Lam, C.H., Oki, E.: Broadband Packet Switching Technologies: A Practical Guide to ATM Switches and IP Routers. Wiley, New York (2001)

    Book  Google Scholar 

  32. Yao, S., Mukherjee, B., Dixit, S.: Advances in Photonic Packet Switching: An Overview. IEEE Communication Magazine 38(2), 84–94 (2000)

    Article  Google Scholar 

  33. Yang, J., Li, J., Zeng, Q., Ye, T., Zhu, G.: A Novel Optical Packet Switch: Control Algorithm and Performance. Optical Transmission, Switching, and Subsystems II. Proceedings of SPIE 5625, 913–922 (2005)

    Article  Google Scholar 

  34. Karol, M.J.: Shared-Memory optical packet (ATM) switch. In: Proceedings of SPIE, Multigigabit Fibre Communications Systems, vol. 2024, pp. 212–222 (1993)

    Google Scholar 

  35. Liew, S.Y., Hu, G., Chao, H.J.: Scheduling Algorithms for Shared Fibre-Delay-Line Optical Packet Switches – Part I: The Single-Stage Case. IEEE/OSA J. Lightwave Technology 23(4), 1586–1600 (2005)

    Article  Google Scholar 

  36. Wang, X., Jiang, X., Horiguchi, S.: Maintaining Packet Order in Reservation-based Shared-Memory Optical Packet Switch. In: 22nd International Conference on Advanced Information Networking and Applications, pp. 912–917 (2008)

    Google Scholar 

  37. Jiang, S., Hu, G., Liew, S.Y.: Scheduling Algorithms for Shared Fibre-Delay-Line Optical Packet Switches – Part II: The Three-Stage Clos-Network Case. IEEE/OSA J. Lightwave Technology 23(4), 1601–1609 (2005)

    Article  Google Scholar 

  38. Hwang, F.K.: Control Algorithms for Rearrangeable Clos Networks. IEEE Transactions on Communications COM-31(8), 952–954 (1983)

    Article  MATH  Google Scholar 

  39. Jajszczyk, A.: A Simple Algorithm for the Control of Rearrangeable Switching Networks. IEEE Transactions on Communications COM-33(2), 169–171 (1985)

    Article  MathSciNet  Google Scholar 

  40. Karol, M.J.: I, C-L.: Performance Analysis of a Growable Architecture for Broadband Packet (ATM) Switching. In: Proceedings of the Global Telecommunications Conference GLOBECOM ’89, pp. 1173–1180 (1989)

    Google Scholar 

  41. Wosinska, L., Haralson, J., Thylen, L., Öberg, J., Hessmo, B.: Benefit of Implementing Novel Optical Buffers in an Asynchronous Photonic Packet Switch. In: Proceedings of European Conference on Optical Communication ECOC’04, Stockholm, Sweden (2004)

    Google Scholar 

  42. Chen, J., Wosinska, L., Thylén, L., He, S.: Novel Architectures of Asynchronous Optical Packet Switch. In: Proc. of European Conference on Optical Communication ECOC’07, Berlin, Germany (2007)

    Google Scholar 

  43. Wosinska, L., Karlsson, G.: A photonic packet switch for high capacity optical networks. In: Proceedings Batonal Fibre Optic Engineers Conference, NFOEC’02, Dallas, TX (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kabaciński, W. et al. (2009). Novel Switch Architectures. In: Tomkos, I., Spyropoulou, M., Ennser, K., Köhn, M., Mikac, B. (eds) Towards Digital Optical Networks. Lecture Notes in Computer Science, vol 5412. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01524-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01524-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01523-6

  • Online ISBN: 978-3-642-01524-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics