Skip to main content

Ultrasonic Nanowelding Technology Between Carbon Nanotubes and Metal Electrodes

  • Chapter
  • First Online:
Nanowelded Carbon Nanotubes

Part of the book series: NanoScience and Technology ((NANO))

  • 871 Accesses

Abstract

Carbon nanotubes (CNTs) exhibit a great prospect as a nanoscale building block for future nanoelectronics due to their unique one-dimensional nanostructure and properties [1]. To explore their potential in various domains, an essential prerequisite is to build reliable interconnections between the CNTs and the external electrical circuits and mechanical systems. To address this need, various chemical and physical processes have been explored to build such interconnections. For example, Burghard et al. reported “controlled adsorption of CNTs on chemically modified electrodes” for interconnection of CNTs [2,3]. However, a stronger bonding instead of a weak chemical adsorption is mandatory for constructing reliable nanodevices. Ruoff et al. showed that focused electron beam in a scanning electron microscope (SEM) can be used to deposit a small amount of hydrocarbon contamination so as to attach nanotubes on an AFM tip [4, 5]. Such a “spot welding” technique has also been used for connecting CNTs and polysilicon surface electrically and mechanically [6]. Madsen et al. presented an in situ method for highly conductive attachment of multiwalled carbon nanotubes (MWCNTs) onto microelectrodes by depositing a gold–carbon composite using a focused electron beam system [7]. Although robust contacts can be obtained by the these methods, limited access to a focused electron beam system and the small-scale spot-treatment nature prevent their large-scale industrial applications. To meet the needs of future large-scale applications, simpler, less capital intensive and more scalable processes are highly desirable. In this chapter, we introduce a novel ultrasonic nanowelding process, with which one can fabricate reliable bonding between single-wall carbon nanotubes (SWCNTs) and metal electrodes. Contacts formed by the present process are found to have low contact resistance and good long-term stability and mechanical strength. A low resistance of around 15 k Ω for a 1- µm-long metallic SWCNT at room temperature can be achieved. After nanowelding, the effective Schottky barrier height between semiconducting SWCNT and Ti electrode is as low as ~6:6 meV in the ON-state and the barrier width is ~0:9 nm at Vg = 0. The performance of the CNT field-effect transistors (FETs) fabricated by this method has also been demonstrated to have greatly improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Hoenlein, F. Kreupl, G.S. Duesberg, A.P. Graham, M. Liebau, R.V. Seidel, E. Unger. IEEE. Trans. Comp. Pack. Technol. 27, 629 (2004).

    Article  CAS  Google Scholar 

  2. J. Muster, M. Burghard, S. Roth, G.S. Duesberg, E. Hernandez, A. Rubio, J. Vac. Sci. Technol. B 16, 2796 (1998).

    Article  CAS  Google Scholar 

  3. M. Burghard, G.S. Duesberg, G. Philipp, J. Muster, S. Roth, Adv. Mater. 10, 584 (1998).

    Article  CAS  Google Scholar 

  4. M.F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff, Science 287, 637 (2000).

    Article  CAS  Google Scholar 

  5. M.F. Yu, M.J. Dyer, G.D. Skidmore, H.W. Rohrs, X.K. Lu, K.D. Ausman, Von., J.R. Her, R.S. Ruoff, Nanotechnology 10, 244 (1999).

    Article  CAS  Google Scholar 

  6. P.A. Williams, S.J. Papadakis, M.R. Falvo, A.M. Patel, M. Sinclair, A. Seeger, A. Helser, R.M. Taylor, S. Washburn, R. Superfine, Appl. Phys. Lett. 80, 2574 (2002).

    Article  CAS  Google Scholar 

  7. D.N. Madsen, K. Mølhave, R. Mateiu, A.M. Rasmussen, M. Brorson, C.H. Jacobsen, P. Bøggild, Nano Lett. 3, 47 (2003).

    Article  CAS  Google Scholar 

  8. C.X. Chen, L.J. Yan, E.S.W. Kong, Y.F. Zhang, Nanotechnology 17, 2192 (2006).

    Article  CAS  Google Scholar 

  9. Y. Woo, G.S. Duesberg, S. Roth, Nanotechnology 18, 095203 (2007).

    Article  CAS  Google Scholar 

  10. S.J. Tans, M.A.R. Verschueren, C. Dekker Nature (London) 393, 49 (1998).

    Article  CAS  Google Scholar 

  11. J.W.G. Wildboer, L.C. Venerma, A.G. Rinzler, R.E. Smalley, C. Dekker, Nature (London) 391, 59 (1998).

    Article  Google Scholar 

  12. M.W. Bockrath, Ph.D. thesis, 1999.

    Google Scholar 

  13. M. Bockrath, D.H. Cobden, P.L. MacEuen, N.G. Chopra, A. Zettl, A. Thess, R.E. Smalley, Science. 275(5308), 1922 (1997).

    Article  CAS  Google Scholar 

  14. J. Tersoff, Appl. Phys Lett. 74(15), 2122 (1999).

    Article  CAS  Google Scholar 

  15. C.X. Chen L.Y. Liu, Y. Lu, X.J. Sheng, H. Ding, Y.F. Zhang, Carbon 45, 436 (2007).

    Article  CAS  Google Scholar 

  16. A. Javey, J. Guo, D.B. Farmer, Q. Wang, D. Wang, R.G. Gordon, Nano Lett. 4(3), 447 (2004).

    Article  CAS  Google Scholar 

  17. C.X. Chen, Y.F. Zhang, J. Phys. D: Appl. Phys. 39, 172 (2006).

    Article  CAS  Google Scholar 

  18. J.Q. Li, Q. Zhang, D.J. Yang, J.Z. Tian, Carbon, 42, 2263 (2004).

    Article  CAS  Google Scholar 

  19. G.G. Harman, Wire Bonding in Microelectronics: Materials, Processes, Reliability, and Yield, 2nd edn. (McGraw-Hill, New York, 1997).

    Google Scholar 

  20. S.Y. Kang, P.M. Williams, T.S. McLaren, Y.C. Lee, Mater. Chem. Phys. 42, 31 (1995).

    Article  CAS  Google Scholar 

  21. Ph. Avouris, Chem. Phys. 281, 429 (2002).

    Article  CAS  Google Scholar 

  22. C.D. Breach, F. Wulff, Microelectron. Reliab. 44, 973 (2004).

    Article  CAS  Google Scholar 

  23. F.W. Wulff, C.D. Breach, D. Stephan, Saraswati, K.J. Dittmer, Proceedings of 6th Electronics Packaging Technology Conference, Singapore 2004, p. 348.

    Google Scholar 

  24. R. Martel, V. Derycke, C. Lavoie, J. Appenzeller, K.K. Chan, J. Tersoff, Ph. Avouris, Phys. Rev. Lett. 87, 256805 (2001).

    Article  CAS  Google Scholar 

  25. A. Bachtold, P. Hadley, T. Nakanishi, C. Dekker, Science 294, 1317 (2001).

    Article  CAS  Google Scholar 

  26. J. Appenzeller, R. Martel, V. Derycke, M. Radosavljevic, S. Wind, D. Neumayer, Ph. Avouris, Micro. Eng. 64, 391 (2002).

    Article  CAS  Google Scholar 

  27. V. Derycke, R. Martel, J. Appenzeller, Ph. Avouris, Appl. Phys. Lett. 80, 2773 (2002).

    Article  CAS  Google Scholar 

  28. S.J. Wind, J. Appenzeller, R. Martel, V. Derycke, Ph. Avouris, Appl. Phys. Lett. 80, 3817 (2002).

    Article  CAS  Google Scholar 

  29. A. Javey, Q. Wang, A. Ural, Y. Li, H. Dai Nano Lett. 2, 929 (2002).

    Article  CAS  Google Scholar 

  30. K. Xiao, Y. Liu, P. Hu, G. Yu, Y. Sun, D. Zhu J. Am. Chem. Soc. 127, 8614 (2005).

    Article  CAS  Google Scholar 

  31. B.L. Sharma, Metal–Semiconductor Schottky Barrier Junctions and Their Applications (Plenum Press, New York, 1984) p. 60.

    Google Scholar 

  32. S.M. Sze, Physics of Semiconductor Devices (Wiley, New York, 1981) p. 248.

    Google Scholar 

  33. A. Bezryadin, A.R.M. Verschueren, S.J. Tans C. Dekker, Phys. Rev. Lett. 80, 4036 (1998).

    Article  CAS  Google Scholar 

  34. H.C. Postma, A. Sellmeijer, C. Dekker, Adv. Mater, 12, 1299 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changxin Chen .

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, C., Zhang, Y. (2009). Ultrasonic Nanowelding Technology Between Carbon Nanotubes and Metal Electrodes. In: Nanowelded Carbon Nanotubes. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01499-4_4

Download citation

Publish with us

Policies and ethics