Skip to main content

Atomic Manipulation on Metal Surfaces

  • Chapter
  • First Online:
Noncontact Atomic Force Microscopy

Part of the book series: NanoScience and Technology ((NANO))

  • 2559 Accesses

Abstract

Half a century ago, Nobel Laureate Richard Feynman asked in a now-famous lecture what would happen if we could precisely position individual atoms at will [R.P. Feynman, Eng. Sci. 23, 22 (1960)]. This dream became a reality some 30 years later when Eigler and Schweizer were the first to position individual Xe atoms at will with the probe tip of a low-temperature scanning tunneling microscope (STM) on a Ni surface [D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990)].

Nowadays, such “atom manipulation” is used widely in research to build, probe, and manipulate objects at the scale of individual atoms. For example, two- and one-dimensional confined quantum structures were built atom-by-atom, and in those studies the STM was used to directly image the quantum nature of the electrons confined in those artificial structures [M.F. Crommie, C.P. Lutz, D.M. Eigler, Science 262, 218 (1993); H.C. Manoharan, C.P. Lutz, D.M. Eigler, Nature 403, 512 (2000); N. Nilius, T.M. Wallis, W. Ho, Science 297, 1853 (2002); C.R. Moon, L.S. Mattos, B.K. Foster, G. Zeltzer, W. Ko, H.C. Manoharan, Science 319, 782 (2008)]. Atom-manipulation has been used to build molecules from the constituting individual atoms or smaller molecules [S.-W. Hla, L. Bartels, G. Meyer, K.-H. Rieder, Phys. Rev. Lett. 85, 2777 (2000); J. Repp, G. Meyer, S. Paavilainen, F.E. Olsson, M. Persson, Science 312, 1196 (2006)]. And last, but not least, atom manipulation has been used to build devices on the atomic scale such as the molecules cascade [A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler, Science 298, 1381 (2002)] and atomic switches [D.M. Eigler, C.P. Lutz, W.E. Rudge, Nature 352, 600 (1991); J.A. Stroscio, F. Tavazza, J.N. Crain, R.J. Celotta, A.M. Chaka, Science 313, 984 (2006)].

However, in all this body of work, the fundamental question – “how much force does it take to move an atom on a surface?” – had eluded experimental access until the advent of atomic-resolution noncontact AFM. Only in the last few years has it become possible to manipulate matter atom-by-atom with AFM [N. Oyabu, O. Custance, I. Yi, Y. Sugawara, S. Morita, Phys. Rev. Lett. 90, 176102 (2003); Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Pérez, O. Custance, Phys. Rev. Lett. 98, 106104 (2007)], most prominently in the controlled exchange of atoms within a surface layer of alloyed semiconductors [N. Oyabu, Y. Sugimoto, M. Abe, Ò. Custance, S. Morita, Nanotechnology 16, S112 (2005); Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, Ò. Custance, S. Morita, Nat. Mater. 4, 156(2005)].

This chapter describes the use of a low-temperature scanning probe system that can be simultaneously operated as an STM and an AFM in the noncontact mode with sub-Angstrom oscillation amplitude. We will discuss how such a tool can be used to simultaneously measure the vertical and lateral forces exerted by the probe tip on the adsorbate before and during the controlled manipulation process.

Understanding the force necessary to move specific atoms on specific surfaces is one of the keys to further progress in nanoscience and will enable a deeper understanding of the atomic-scale processes at the heart of future nanotechnology endeavors, furthering progress toward nanoscale devices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.P. Feynman, Eng. Sci. 23, 22 (1960)

    Google Scholar 

  2. D.M. Eigler, E.K. Schweizer, Nature 344, 524 (1990)

    Article  CAS  Google Scholar 

  3. M.F. Crommie, C.P. Lutz, D.M. Eigler, Science 262, 218 (1993)

    Article  CAS  Google Scholar 

  4. H.C. Manoharan, C.P. Lutz, D.M. Eigler, Nature 403, 512 (2000)

    Article  CAS  Google Scholar 

  5. N. Nilius, T.M. Wallis, W. Ho, Science 297, 1853 (2002)

    Article  CAS  Google Scholar 

  6. C.R. Moon, L.S. Mattos, B.K. Foster, G. Zeltzer, W. Ko, H.C. Manoharan, Science 319, 782 (2008)

    Article  CAS  Google Scholar 

  7. S.-W. Hla, L. Bartels, G. Meyer, K.-H. Rieder, Phys. Rev. Lett. 85, 2777 (2000)

    Article  CAS  Google Scholar 

  8. J. Repp, G. Meyer, S. Paavilainen, F.E. Olsson, M. Persson, Science 312, 1196 (2006)

    Article  CAS  Google Scholar 

  9. A.J. Heinrich, C.P. Lutz, J.A. Gupta, D.M. Eigler, Science 298, 1381 (2002)

    Article  CAS  Google Scholar 

  10. D.M. Eigler, C.P. Lutz, W.E. Rudge, Nature 352, 600 (1991)

    Article  CAS  Google Scholar 

  11. J.A. Stroscio, F. Tavazza, J.N. Crain, R.J. Celotta, A.M. Chaka, Science 313, 984 (2006)

    Article  CAS  Google Scholar 

  12. N. Oyabu, O. Custance, I. Yi, Y. Sugawara, S. Morita, Phys. Rev. Lett. 90, 176102 (2003)

    Article  CAS  Google Scholar 

  13. Y. Sugimoto, P. Jelinek, P. Pou, M. Abe, S. Morita, R. Pérez, O. Custance, Phys. Rev. Lett. 98, 106104 (2007)

    Article  CAS  Google Scholar 

  14. N. Oyabu, Y. Sugimoto, M. Abe, Ó. Custance, S. Morita, Nanotechnology 16, S112 (2005)

    Article  CAS  Google Scholar 

  15. Y. Sugimoto, M. Abe, S. Hirayama, N. Oyabu, Ó. Custance, S. Morita, Nat. Mater. 4, 156 (2005)

    Article  Google Scholar 

  16. J.A. Stroscio, D.M. Eigler, Science 254, 1319 (1991)

    Article  CAS  Google Scholar 

  17. L. Bartels, G. Meyer, K.-H. Rieder, Phys. Rev. Lett. 79, 697 (1997)

    Article  CAS  Google Scholar 

  18. R.S. Becker, J.A. Golovchenko, B.S. Swartzentruber, Nature 325, 419 (1987)

    Article  CAS  Google Scholar 

  19. L. Bartels, G. Meyer, K.-H. Rieder, Appl. Phys. Lett. 71, 213 (1997)

    Article  CAS  Google Scholar 

  20. P. Zeppenfeld, C.P. Lutz, D.M. Eigler, Ultramicroscopy 42, 128 (1992)

    Article  Google Scholar 

  21. M.F. Crommie, C.P. Lutz, D.M. Eigler, Nature 363, 524 (1993)

    Article  CAS  Google Scholar 

  22. T.A. Jung, R.R. Schlittler, J.K. Gimzewski, H. Tang, C. Joachim, Science 271, 181 (1996)

    Article  CAS  Google Scholar 

  23. M.T. Cuberes, R.R. Schlittler, J.K. Gimzewski, Appl. Phys. Lett. 69, 3016 (1996)

    Article  CAS  Google Scholar 

  24. J. Lagoute, K. Kanisawa, S. Fölsch, Phys. Rev. B 70, 245415 (2004)

    Article  CAS  Google Scholar 

  25. M.J. Cromstock, J. Cho, A. Kirakosian, M.F. Crommie, Phys. Rev. B 72, 153414 (2005)

    Article  CAS  Google Scholar 

  26. J. Gaudioso, L.J. Lauhon, W. Ho, Phys. Rev. Lett. 85, 1918 (2000)

    Article  CAS  Google Scholar 

  27. C. Loppacher, M. Guggisberg, O. Pfeiffer, E. Meyer, M. Bammerlin, R. Lüthi, R. Schlittler, J.K. Gimzewski, H. Tang, C. Joachim, Phys. Rev. Lett. 90, 066107 (2003)

    Article  CAS  Google Scholar 

  28. B.-Y. Choi, S.-J. Kahng, S. Kim, H. Kim, H.W. Kim, Y.J. Song, J. Ihm, Y. Kuk, Phys. Rev. Lett. 96, 156106 (2006)

    Article  CAS  Google Scholar 

  29. F. Moresco, G. Meyer, K.-H. Rieder, Phys. Rev. Lett. 86, 672 (2001)

    Article  CAS  Google Scholar 

  30. N. Henningsen, K.J. Franke, I.F. Torrente, G. Schulze, B. Priewisch, K. Rück-Braun, J. Dojić, T. Klamroth, P. Saalfrank, J.I. Pascual, J. Phys. Chem. C 111, 14843 (2007)

    Article  CAS  Google Scholar 

  31. L. Bartels, G. Meyer, K.-H. Rieder, Surf. Sci. 432, L621 (1999)

    Article  CAS  Google Scholar 

  32. R.E. Walkup, D.M. Newns, P. Avouris, Phys. Rev. B 48, 1858 (1993)

    Article  CAS  Google Scholar 

  33. M. Brandbyge, P. Hedegard, Phys. Rev. Lett. 72, 2919 (1994)

    Article  CAS  Google Scholar 

  34. S. Gao, M. Persson, B.I. Lundqvist, Solid State Commun. 84, 271 (1992)

    Article  CAS  Google Scholar 

  35. S. Gao, M. Persson, B.I. Lundqvist, Phys. Rev. B 55, 4825 (1997)

    Article  CAS  Google Scholar 

  36. S. Ciraci, E. Tekman, A. Baratoff, I.P. Batra, Phys. Rev. B 46, 10411 (1992)

    Article  Google Scholar 

  37. U. Kürpick, T.S. Rahman, Phys. Rev. Lett. 83, 2765 (1999)

    Article  Google Scholar 

  38. L. Pizzagalli, A. Baratoff, Phys. Rev. B 68, 115427 (2003)

    Article  CAS  Google Scholar 

  39. K. Liu, S. Gao, Phys. Rev. Lett. 95, 226102 (2005)

    Article  CAS  Google Scholar 

  40. N. Lorente, J. Phys. Condens. Matter 17, S1049 (2005)

    Article  CAS  Google Scholar 

  41. R. Otero, F. Rosei, F. Besenbacher, Ann. Rev. Phys. Chem. 57, 497 (2006)

    Article  CAS  Google Scholar 

  42. M. Ternes, C.P. Lutz, C.F. Hirjibehedin, F.J. Giessibl, A.J. Heinrich, Science 319, 1066 (2008)

    Article  CAS  Google Scholar 

  43. T.R. Albrecht, P. Grütter, D. Horne, D. Rugar, J. Appl. Phys. 69, 668 (1991)

    Article  Google Scholar 

  44. F.J. Giessibl, Appl. Phys. Lett. 76, 1470 (2000)

    Article  CAS  Google Scholar 

  45. D.R. Lide (ed.), Handbook of Chemistry and Physics, 90th edn. (CRC, Boca Raton, Florida, 1999)

    Google Scholar 

  46. F.J. Giessibl, Appl. Phys. Lett. 78, 123 (2001)

    Article  CAS  Google Scholar 

  47. J.E. Sader, S.P. Jarvis, Appl. Phys. Lett. 84, 1801 (2004)

    Article  CAS  Google Scholar 

  48. N.D. Lang, Phys. Rev. B 34, 5947 (1986)

    Article  Google Scholar 

  49. H.B. Michaelson, J. Appl. Phys. 48, 4729 (1977)

    Article  CAS  Google Scholar 

  50. P. Buluschek, Dissertation, École Polytechnique Fédérale de Lausanne, 2007

    Google Scholar 

  51. Y. Yayon, X. Lu, M.F. Crommie, Phys. Rev. B 73, 155401 (2006)

    Article  CAS  Google Scholar 

  52. D.V. Tsivlin, V.S. Stepanyuk, W. Hergert, J. Kirschner, Phys. Rev. B 68, 205411 (2003)

    Article  CAS  Google Scholar 

  53. J.A. Stroscio, R.J. Celotta, Science 306, 242 (2004)

    Article  CAS  Google Scholar 

  54. G. Meyer, B. Neu, K.-H. Rieder, Appl. Phys. A 60, 343 (1995)

    Article  Google Scholar 

  55. L. Bartels, G. Meyer, K.-H. Rieder, D. Velic, E. Knoesel, A. Hotzel, M. Wolf, G. Ertl Phys. Rev. Lett. 80, 2004 (1998)

    Article  CAS  Google Scholar 

  56. F.J. Giessibl, S. Hembacher, H. Bielefeld, J. Mannhart, Science 289, 422 (2000)

    Article  CAS  Google Scholar 

  57. T. Komeda, Y. Kim, M. Kawai, B.N.J. Persson, H. Ueba, Science 295, 2055 (2002)

    Article  CAS  Google Scholar 

  58. H. Hölscher, S.M. Langkat, A. Schwarz, R. Wiesendanger, Appl. Phys. Lett. 81, 4428 (2002)

    Article  CAS  Google Scholar 

  59. S.R. Bahn, K.W. Jacobsen, Phys. Rev. Lett. 87, 266101 (2001)

    Article  CAS  Google Scholar 

  60. B. Hammer, J.K. Norskov, Nature 376, 238 (1995)

    Article  CAS  Google Scholar 

  61. V. Madhavan, W. Chen, T. Jamneala, M.F. Crommie, N.S. Wingreen, Science 280, 567 (1998)

    Article  CAS  Google Scholar 

  62. K.-F. Braun, S.-W. Hla, Phys. Rev. B 75, 033406 (2007)

    Article  CAS  Google Scholar 

  63. K.L. Wong, B.V. Rao, G. Pawin, E. Ulin-Avila, L. Bartels, J. Chem. Phys. 123, 201102 (2005)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Ternes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ternes, M., Lutz, C.P., Heinrich, A.J. (2009). Atomic Manipulation on Metal Surfaces. In: Morita, S., Giessibl, F., Wiesendanger, R. (eds) Noncontact Atomic Force Microscopy. NanoScience and Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01495-6_9

Download citation

Publish with us

Policies and ethics