Advertisement

Magnetic Recording

  • Alberto P. GuimarãesEmail author
Chapter
Part of the NanoScience and Technology book series (NANO)

Summary

Magnetic storage is the most important technology for data recording, and has evolved very rapidly in the last half century. Although it has reached a high level of refinement, it is based on relatively simple principles. The limitations eventually imposed on its continued evolution have stimulated the development of other solutions, magnetic or not, for the storage of data, in the face of the information explosion. Some of the magnetic solutions include the encoding of information onto a string of magnetic domains in magnetic nanowires, or in the magnetization states of magnetic nanodisks and nanorings.

Keywords

Random Access Memory Hard Disk Drive Areal Density Magnetic Record Spin Valve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. H.N. Bertram , Theory of Magnetic Recording (Cambridge University Press, 1994)Google Scholar
  2. W.H. Doyle , in Magnetic Recording Devices: Future Technologies, ed. by K.H.J. Buschow. Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005), pp. 539–548Google Scholar
  3. P.P. Freitas, H. Ferreira, S. Cardoso, S. van Dijken, J. Gregg , in Nanostructures for Spin Electronics, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 403–460Google Scholar
  4. Y. Li, A.K. Menon , in Magnetic Recording Technologies: Overview, ed. by K.H.J. Buschow. Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005), pp. 627–634Google Scholar
  5. H. J. Richter , J. Phys. D: Appl. Phys. 40, R149–R177 (2007)CrossRefADSGoogle Scholar
  6. J. Shi , in Magnetization Reversal in Patterned Magnetic Nanostructures, ed. by B. Heinrich, A.C. Bland. Ultrathin Magnetic Structures, vol 4 (Springer, Berlin, 2004), pp. 307–331Google Scholar
  7. T. Thomson, L. Abelman, H. Groenland , in Magnetic Storage: Past, Present and Future, ed. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini. Magnetic Nanostructures in Modern Technology (Springer, Dordrecht, 2008), pp. 237–306CrossRefGoogle Scholar

References

  1. 1.
    H.N. Bertram, Theory of Magnetic Recording (Cambridge University Press, Cambridge, 1994)CrossRefGoogle Scholar
  2. 2.
    S. Bohlens, B. Krger, A. Drews, M. Bolte, G. Meier, D. Pfannkuche, Appl. Phys. Lett. 93, 142508 (2008)CrossRefADSGoogle Scholar
  3. 3.
    G.W. Burr, B.N. Kurdi, J.C. Scott, C.H. Lam, K. Gopalakrishnan, R.S. Shenoy, IBM J. Res. Dev. 52, 449–464 (2008)CrossRefGoogle Scholar
  4. 4.
    C. Chappert, A. Fert, F. Nguyen Van Dau, Nat. Mater. 6, 813–823 (2007)CrossRefADSGoogle Scholar
  5. 5.
    P.P. Freitas, H. Ferreira, S. Cardoso, S. van Dijken, J. Gregg, in Nanostructures for Spin Electronics, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 403–460Google Scholar
  6. 6.
    X.F. Han, Z.C. Wen, H.X. Wei, J. Appl. Phys. 103, 07E933–07E939 (2008)CrossRefGoogle Scholar
  7. 7.
    O. Karlqvist, Trans. Roy. Inst. Technol. Stockholm. 86, 3–27 (1954)Google Scholar
  8. 8.
    S. Kawata, Y. Kawata, Chem. Rev. 100, 1777–1788 (2000)CrossRefGoogle Scholar
  9. 9.
    S.K. Kim, K.S. Lee, Y.S. Yu, Y.S. Choi, Appl. Phys. Lett. 92, 022509 (2008)CrossRefADSGoogle Scholar
  10. 10.
    A. Knoll, P. Bachtold, J. Bonan, G. Cherubini, M. Despont, U. Drechsler, U. Durig, B. Gotsmann, W. Haberle, C. Hagleitner, D. Jubin, M.A. Lantz, A. Pantazi, H. Pozidis, H. Rothuizen, A. Sebastian, R. Stutz, P. Vettiger, D. Wiesmann, E.S. Eleftheriou, Microelectron. Eng. 83, 1692–1697 (2006)CrossRefGoogle Scholar
  11. 11.
    S.S.P. Parkin, M. Hayashi, L. Thomas, Science 320, 190–194 (2008)CrossRefADSGoogle Scholar
  12. 12.
    S. Raoux, G.W. Burr, M.J. Breitwisch, C.T. Rettner, Y.-C. Chen, R.M. Shelby, M. Salinga, D. Krebs, S.-H. Chen, H.-L. Lung, C.H. Lam, IBM J. Res. Dev. 52, 465–479 (2008)CrossRefGoogle Scholar
  13. 13.
    H.J. Richter, J. Phys. D: Appl. Phys. 40, R149–R177 (2007)CrossRefADSGoogle Scholar
  14. 14.
    T. Thomson, L. Abelman, H. Groenland, in Magnetic Storage: Past, Present and Future, ed. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini. Magnetic Nanostructures in Modern Technology (Springer, Dordrecht, 2008), pp. 237–306CrossRefGoogle Scholar
  15. 15.
    T. Yang, A. Hirohata, L. Vila, T. Kimura, Y. Otani, Phys. Rev. B 76, 172401–172404 (2007)CrossRefADSGoogle Scholar
  16. 16.
    J.-G. Zhu, Y. Zheng, G.A. Prinz, J. Appl. Phys. 87, 6668–6673 (2000)Google Scholar
  17. 17.
    J.-G. Zhu, X. Zhu, Y. Tang, IEEE Trans. Magn. 44, 125–131 (2008)CrossRefMathSciNetADSGoogle Scholar
  18. 18.
    X. Zhu, J.-G. Zhu, IEEE Trans. Magn. 39, 2854–2856 (2003)CrossRefADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Centro Brasileiro de Pesquisas Físicas (CBPF)Rio de Janeiro - RJBrasil/Brazil

Personalised recommendations