Advertisement

Magnetism of Nanodisks, Nanorings, and Nanowires

  • Alberto P. GuimarãesEmail author
Chapter
Part of the NanoScience and Technology book series (NANO)

Summary

This chapter contains a brief survey of the remarkable magnetic properties of low-dimensional magnetic objects such as nanodisks, nanorings, and nanowires. These nanoscopic systems have been intensely studied in the last years, not only because of these properties, but also for their enormous potential for high-density information storage. Nanodisks and nanorings are promising as elements of bit-patterned magnetic recording systems, and nanowires, among other applications, can store and process information through the motion of magnetic domain walls.

Keywords

Domain Wall Vortex Core Hysteresis Curve Vortex Polarity Critical Diameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. C.L. Chien, F.Q. Zhu, J.-G. Zhu , Phys. Today 60, 40–45 (2007)CrossRefGoogle Scholar
  2. A. Fert, L. Piraux , J. Magn. Magn. Mater. 200, 338–358 (1999)CrossRefADSGoogle Scholar
  3. M. Kläui , in Magnetic Rings: A Playground to Study Geometrically Confined Domain Walls, ed. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini. Magnetic Nanostructures in Modern Technology (Springer, Dordrecht, 2008), pp. 85–104CrossRefGoogle Scholar
  4. C.A. Ross , F.J. Castaño, D. Morecroft, W. Jung, H.I. Smith, T.A. Moore, T.J. Hayward, J.A.C. Bland, T.J. Bromwich, A.K. Petford-Long, J. Appl. Phys. 99, 08S501–08S506 (2006)CrossRefGoogle Scholar
  5. D.J. Sellmyer , M. Zheng, R. Skomski, J. Phys. Condens. Matter. 13, R433–R460 (2001)CrossRefADSGoogle Scholar
  6. L. Sun , Y. Hao, C.L. Chien, P.C. Searson, IBM J. Res. Dev. 49, 79–102 (2005)CrossRefGoogle Scholar
  7. L. Thomas, S. Parkin , in Current Induced Domain-Wall Motion in Magnetic Nanostructures, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 2 (Wiley, Chichester, 2007), pp. 942–982Google Scholar
  8. C.A.F. Vaz, T.J. Hayward, J. Llandro, F. Schackert, D. Morecroft, J.A.C. Bland, M. Kläui, M. Laufenberg, D. Backes, U. Rüdiger, F.J. Castaño, C.A. Ross, L.J. Heyderman, F. Nolting, A. Locatelli, G. Faini, S. Cherifi, W. Wernsdorfer , J. Phys. Condens. Matter. 19, 255207–255214 (2007)CrossRefADSGoogle Scholar
  9. M. Vazquez , in Advanced Magnetic Nanowires, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 4 (Wiley, Chichester, 2007), pp. 2193–2226Google Scholar
  10. T.L. Wade, J.E. Wegrowe , Eur. J. Appl. Phys. 29, 3–22 (2005)CrossRefADSGoogle Scholar

References

  1. 1.
    A.S. Arrott, in Introduction to Micromagnetics, ed. by B. Heinrich, J.A.C. Bland. Ultrathin Magnetic Structures IV (Springer, Berlin, 2005), pp. 101–148CrossRefGoogle Scholar
  2. 2.
    L.D. Barron, in Chirality at the Sub-Molecular Level: True and False Chirality, ed. by W.J. Lough, I.W. Wainer. Chirality in Natural and Applied Science (Blackwell, Victoria, 2002), pp. 53–86Google Scholar
  3. 3.
    G.S.D. Beach, C. Knutson, M. Tsoi, J.L. Erskine, J. Magn. Magn. Mater. 310, 2038–2040 (2007)CrossRefADSGoogle Scholar
  4. 4.
    L. Berger, Phys. Rev. B 54, 9353–9358 (1996)CrossRefADSGoogle Scholar
  5. 5.
    K.S. Buchanan, P.E. Roy, M. Grimsditch, F.Y. Fradin, K.Y. Guslienko, S.D. Bader, V. Novosad, Nat. Phys. 1, 172–176 (2005)CrossRefGoogle Scholar
  6. 6.
    F.J. Castao, C.A. Ross, A. Eilez, W. Jung, C. Frandsen, Phys. Rev. B 69, 144421 (2004)CrossRefADSGoogle Scholar
  7. 7.
    M. Chen, P.C. Searson, C.L. Chien, J. Appl. Phys. 93, 8253–8255 (2003)Google Scholar
  8. 8.
    C.L. Chien, F.Q. Zhu, J.-G. Zhu, Phys. Today 60, 40–45 (2007)CrossRefGoogle Scholar
  9. 9.
    S.-B. Choe, Y. Acremann, A. Scholl, A. Bauer, A. Doran, J. Stohr, H.A. Padmore, Science 304, 420–422 (2004)CrossRefADSGoogle Scholar
  10. 10.
    M. Darques, A. Encinas, L. Vila, L. Piraux, J. Phys. D: Appl. Phys. 37, 1411–1416 (2004)CrossRefGoogle Scholar
  11. 11.
    C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, J. Phys. Condens. Matter 14, R1175–R1262 (2002)CrossRefADSGoogle Scholar
  12. 12.
    U. Ebels, A. Radulescu, Y. Henry, L. Piraux, K. Ounadjela, Phys. Rev. Lett. 84, 983–986 (2000)CrossRefADSGoogle Scholar
  13. 13.
    H. Forster, T. Schrefl, W. Scholz, D. Suess, V. Tsiantos, J. Fidler, J. Magn. Magn. Mater. 249, 181–186 (2002)CrossRefADSGoogle Scholar
  14. 14.
    K.Y. Guslienko, K.-S. Lee, S.-K. Kim, Phys. Rev. Lett. 100, 027203–027204 (2008)CrossRefADSGoogle Scholar
  15. 15.
    M. Hayashi, L. Thomas, Y.B. Bazaliy, C. Rettner, R. Moriya, X. Jiang, S.S.P. Parkin, Phys. Rev. Lett. 96, 197207 (2006)CrossRefADSGoogle Scholar
  16. 16.
    R. Höllinger, A. Killinger, U. Krey, J. Magn. Magn. Mater. 261, 178–189 (2003)CrossRefADSGoogle Scholar
  17. 17.
    A. Hubert, R. Schäfer, Magnetic Domains. The Analysis of Magnetic Microstructures (Springer, Berlin, 1999)Google Scholar
  18. 18.
    W. Jung, F.J. Castao, C.A. Ross, Phys. Rev. Lett. 97, 247209 (2006)CrossRefADSGoogle Scholar
  19. 19.
    A.F. Khapikov, J. Appl. Phys. 89, 7454–7456 (2001)Google Scholar
  20. 20.
    M. Klui, in Magnetic Rings: A Playground to Study Geometrically Confined Domain Walls, ed. by B. Azzerboni, G. Asti, L. Pareti, M. Ghidini. Magnetic Nanostructures in Modern Technology (Springer, Dordrecht, 2008), pp. 85–104Google Scholar
  21. 21.
    M. Klui, H. Ehrke, U. Rdiger, T. Kasama, R.E. Dunin-Borkowski, D. Backesb, L.J. Heyderman, C.A.F. Vaz, J.A.C. Bland, G. Faini, E. Cambril, W. Wernsdorfer, Appl. Phys. Lett. 87, 102509 (2005)CrossRefADSGoogle Scholar
  22. 22.
    M. Klui, C.A.F. Vaz, J.A.C. Bland, E.H.C.P. Sinnecker, A.P. Guimares, W. Wernsdorfer, G. Faini, E. Cambril, L.J. Heyderman, C. David, Appl. Phys. Lett. 84, 951–953 (2004)CrossRefADSGoogle Scholar
  23. 23.
    V.P. Kravchuk, D.D. Sheka, Y.B. Gaididei, J. Magn. Magn. Mater. 310, 116–125 (2007)CrossRefADSGoogle Scholar
  24. 24.
    M. Laufenberg, D. Bedau, H. Ehrke, M. Klui, U. Rudiger, D. Backes, L.J. Heyderman, F. Nolting, C.A.F. Vaz, J.A.C. Bland, T. Kasama, R.E. Dunin-Borkowski, S. Cherifi, A. Locatelli, S. Heun, Appl. Phys. Lett. 88, 212510–212513 (2006)CrossRefADSGoogle Scholar
  25. 25.
    J.D.L.T. Medina, M. Darques, T. Blon, L. Piraux, A. Encinas, Phys. Rev. B 77, 014417–014419 (2008)CrossRefADSGoogle Scholar
  26. 26.
    N.D. Mermin, Rev. Mod. Phys. 51, 591–648 (1979)CrossRefMathSciNetADSGoogle Scholar
  27. 27.
    M.M. Miller, G.A. Prinz, S.-F. Cheng, S. Bounnak, Appl. Phys. Lett. 81, 2211–2213 (2002)CrossRefADSGoogle Scholar
  28. 28.
    K. Nakamura, T. Ito, A.J. Freeman, Phys. Rev. B 68, 180404–180408 (2003)CrossRefADSGoogle Scholar
  29. 29.
    S. Ono, M. Saito, H. Asoh, Electrochim. Acta 51, 827–833 (2005)CrossRefGoogle Scholar
  30. 30.
    L. Piraux, J.M. George, J.F. Despres, C. Leroy, E. Ferain, R. Legras, K. Ounadjela, A. Fert, Appl. Phys. Lett. 65, 2484–2486 (1994)CrossRefADSGoogle Scholar
  31. 31.
    W. Scholz, K.Y. Guslienko, V. Novosad, D. Suess, T. Schrefl, R.W. Chantrell, J. Fidler. J. Magn. Magn. Mater. 155–163 (2003)Google Scholar
  32. 32.
    N.L. Schryer, L.R. Walker, J. Appl. Phys. 45, 5406–5420 (1974)Google Scholar
  33. 33.
    D.J. Sellmyer, M. Zheng, R. Skomski, J. Phys. Condens. Matter 13, R433–R460 (2001)CrossRefADSGoogle Scholar
  34. 34.
    K. Shigeto, T. Okuno, K. Mibu, T. Shinjo, T. Ono, Appl. Phys. Lett. 80, 4190–4192 (2002)CrossRefADSGoogle Scholar
  35. 35.
    R. Skomski, J. Zhou, in Nanomagnetic Models, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 41–90Google Scholar
  36. 36.
    J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1–L7 (1996)CrossRefGoogle Scholar
  37. 37.
    L. Sun, Y. Hao, C.L. Chien, P.C. Searson, IBM J. Res. Dev. 49, 79–102 (2005)CrossRefGoogle Scholar
  38. 38.
    G. Tatara, H. Kohno, Phys. Rev. Lett. 92, 086601–086604 (2004)CrossRefADSGoogle Scholar
  39. 39.
    A. Thiaville, Y. Nakatani, J. Miltat, Y. Suzukim, Europhys. Lett. 69, 990–996 (2005)CrossRefADSGoogle Scholar
  40. 40.
    L. Thomas, S. Parkin, in Current Induced Domain-Wall Motion in Magnetic Nanostructures, ed. by H. Kronmller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials (Wiley, Chichester, 2007), pp. 942–982Google Scholar
  41. 41.
    O.A. Tretiakov, O. Tchernyshyov, Phys. Rev. B 75, 012408–012409 (2007)CrossRefADSGoogle Scholar
  42. 42.
    N.A. Usov, S.E. Peschany, Phys. Met. Metall. 12, 13–24 (1994)Google Scholar
  43. 43.
    C.A.F. Vaz, T.J. Hayward, J. Llandro, F. Schackert, D. Morecroft, J.A.C. Bland, M. Kläui, M. Laufenberg, D. Backes, U. Rüdiger, F.J. Castaño, C.A. Ross, L.J. Heyderman, F. Nolting, A. Locatelli, G. Faini, S. Cherifi, W. Wernsdorfer, J. Phys. Condens. Matter. 19, 255207–255214 (2007)CrossRefADSGoogle Scholar
  44. 44.
    M. Vzquez, in Advanced Magnetic Nanowires, ed. by H. Kronmller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 4 (Wiley, Chichester, 2007), pp. 2193–2226Google Scholar
  45. 45.
    B. Van Waeyenberge, A. Puzic1, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fähnle, H. Brückl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, G. Schtz1, Nature 444, 461–464 (2006)CrossRefADSGoogle Scholar
  46. 46.
    H. Wang, C.E. Campbell, Phys. Rev. B 76, 220407 (2007)CrossRefADSGoogle Scholar
  47. 47.
    K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Ono, A. Thiaville, T. Ono, Nat. Mater. 6, 269–273 (2007)CrossRefADSGoogle Scholar
  48. 48.
    T. Yang, M. Hara, A. Hirohata, T. Kimura, Y. Otani, Appl. Phys. Lett. 90, 022504 (2007)CrossRefADSGoogle Scholar
  49. 49.
    Y.G. Yoo, M. Kläui, C.A.F. Vaz, L.J. Heyderman, J.A.C. Bland, Appl. Phys. Lett. 82, 2470–2472 (2003)CrossRefADSGoogle Scholar
  50. 50.
    J.-G. Zhu, Y. Zheng, G.A. Prinz, J. Appl. Phys. 87, 6668–6673 (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Centro Brasileiro de Pesquisas Físicas (CBPF)Rio de Janeiro - RJBrasil/Brazil

Personalised recommendations