Advertisement

Magnetism of Small Particles

  • Alberto P. GuimarãesEmail author
Chapter
Part of the NanoScience and Technology book series (NANO)

Summary

Magnetic nanoparticles are important physical systems, relevant for many applications, and in many cases the starting point of fundamental developments in Nanomagnetism. The Stoner–Wohlfarth theory, discussed in this chapter, represents a milestone in the process of understanding nanoparticle magnetism. This theory describes the magnetic properties of ellipsoidal magnetic particles, including the conditions for the homogeneous reversal of their magnetization under applied magnetic field. Magnetic nanoparticles present spin arrangements that may be single-domain, vortex state, or multidomain, with their magnetic behavior depending on the spin configuration. The critical diameters for these configurations can be derived in an approximate form. Nanoparticles in the smaller range of diameters do not behave as stable magnets, exhibiting the phenomenon of Superparamagnetism.

Keywords

Magnetization Reversal Anisotropy Energy Critical Diameter Vortex State Isothermal Remanent Magnetization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. X. Batlle, A. Labarta , J. Phys. D: Appl. Phys. 35, R15–R42 (2002)CrossRefADSGoogle Scholar
  2. G. Bertotti , Hysteresis in Magnetism (Academic Press, San Diego, 1998)Google Scholar
  3. R.W. Chantrell, K. O’Grady , in The Magnetic Properties of Fine Particles, ed. by R. Gerber, C.C. Wright, G. Asti. Applied Magnetism (Kluwer, Dordrecht, 1994), pp. 113–164Google Scholar
  4. B.D. Cullity , Introduction to Magnetic Materials (Addison-Wesley, Reading, 1972)Google Scholar
  5. A.B. Denison , L.J. Hope-Weeks, R.W. Meulenberg, in Quantum Dots, ed. by M. di Ventra, S. Evoy, J.R. Heflein Jr. Introduction to Nanoscale Science and Technology (Springer, New York, 2004), p. 183CrossRefGoogle Scholar
  6. C.L. Dennis , R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, J. Phys.: Condens. Matter 14, R1175–R1262 (2002)Google Scholar
  7. J.L. Dormann, D. Fiorani, E. Tronc , Adv. Chem. Phys. 98, 283–494 (1997)CrossRefGoogle Scholar
  8. D. Fiorani (ed.), Surface Effects in Magnetic Nanoparticles (Springer, New York, 2005)Google Scholar
  9. I.S. Jacobs, C.P. Bean , in Fine Particles, Thin Films and Exchange Anisotropy (Effects of Finite Dimensions and Interfaces on the Basic Properties of Ferromagnets), ed. by G.T. Rado, H. Suhl. Magnetism, vol III (Academic Press, New York, 1963), pp.271–350Google Scholar
  10. S. Mørup, M.F. Hansen , in Superparamagnetic Particles, ed. by H. Kronmüller, S. Parkin. Handbook of Magnetism and Advanced Magnetic Materials, vol 4 (Wiley, Chichester, 2007), pp. 2159–2176Google Scholar
  11. J. Stöhr, H.C. Siegmann , Magnetism From Fundamentals to Nanoscale Dynamics (Springer, Berlin 2006)Google Scholar
  12. C. Tannous, J. Gieraltowski , Eur. J. Phys. 29, 475–487 (2008)CrossRefGoogle Scholar
  13. W. Wernsdorfer , in Magnetic Anisotropy and Magnetization Reversal Studied in Individual Particles, ed. by D. Fiorani. Surface Effects in Magnetic Nanoparticles (Springer, New York, 2005), p. 263Google Scholar
  14. E.P. Wohlfarth , in Fine Particle Magnetism, ed. by L. Falicov, J. Moran-Lopez. Magnetic Properties of Low-Dimensional Systems (Springer, Berlin, 1986), pp. 13–138Google Scholar

References

  1. 1.
    A. Aharoni, J. Appl. Phys. 82, 1281–1287 (1997)Google Scholar
  2. 2.
    A. Aharoni, Introduction to the Theory of Ferromagnetism, 2nd edn. (Oxford University Press, Oxford, 2000)Google Scholar
  3. 3.
    P. Allia, M. Coisson, P. Tiberto, F. Vinai, M. Knobel, M.A. Novak, W.C. Nunes, Phys. Rev. B 64, 14420 (2001)CrossRefGoogle Scholar
  4. 4.
    X. Batlle, A. Labarta, J. Phys. D: Appl. Phys. 35, R15–R42 (2002)CrossRefADSGoogle Scholar
  5. 5.
    M. Bauer, J. Fassbender, B. Hillebrands, R.L. Stamps, Phys. Rev. B 61, 3410–3416 (2000)CrossRefADSGoogle Scholar
  6. 6.
    F. Bdker, S. Mrup, S. Linderoth, Phys. Rev. Lett. 72, 282–285 (1994)CrossRefADSGoogle Scholar
  7. 7.
    L. Berger, Phys. Rev. B 54, 9353–9358 (1996)CrossRefADSGoogle Scholar
  8. 8.
    G. Bertotti, Hysteresis in Magnetism (Academic Press, San Diego, 1998)Google Scholar
  9. 9.
    W.F. Brown Jr., Ann. N.Y. Acad. Sci. 147, 463–488 (1969)Google Scholar
  10. 10.
    W.F. Brown Jr., J. Appl. Phys. 39, 993–994 (1968)Google Scholar
  11. 11.
    R.W. Chantrell, K. O’Grady, in The Magnetic Properties of Fine Particles, ed. by R. Gerber, C.C. Wright, G. Asti. Applied Magnetism (Kluwer, Dordrecht, 1994), pp. 113–164Google Scholar
  12. 12.
    C.L. Dennis, R.P. Borges, L.D. Buda, U. Ebels, J.F. Gregg, M. Hehn, E. Jouguelet, K. Ounadjela, I. Petej, I.L. Prejbeanu, M.J. Thornton, J. Phys. Condens. Matter 14, R1175–R1262 (2002)CrossRefADSGoogle Scholar
  13. 13.
    J.L. Dormann, R. Cherkaoui, L. Spinu, M. Nogus, L. Lucari, F. D’Orazio, D. Fiorani, A. Garcia, E. Tronc, J.P. Olivet, J. Magn. Magn. Mater. 187, L139–L144 (1998)CrossRefADSGoogle Scholar
  14. 14.
    J.L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283–494 (1997)CrossRefGoogle Scholar
  15. 15.
    M. El-Hilo, R.W. Chantrell, K. O’Grady, J. Appl. Phys. 84, 5114–5122 (1998)Google Scholar
  16. 16.
    E.H. Frei, S. Shtrikman, D. Treves, Phys. Rev. 106, 446–455 (1957)zbMATHCrossRefADSGoogle Scholar
  17. 17.
    S. Gangopadhyay, G.C. Hadjipanayis, B. Dale, C.M. Sorensen, K.J. Klabunde, V. Papaefthymiou, A. Kostikas, Phys. Rev. B 45, 9778–9787 (1992)CrossRefADSGoogle Scholar
  18. 18.
    J. Garca-Otero, M. Porto, J. Rivas, J. Appl. Phys. 87, 7376–7381 (2000)Google Scholar
  19. 19.
    D. Givord, M.F. Rossignol, in Coercivity, ed. by J.M.D. Coey. Rare-Earth Iron Permanent Magnets (Clarendon Press, Oxford, 1996)Google Scholar
  20. 20.
    Z.V. Golubenko, A.Z. Kamzin, L.P. Ol’khovik, M.M. Khvorov, Z.I. Sizova, V.P. Shabatin, Phys. Solid. State 44, 1698–1702 (2002)CrossRefADSGoogle Scholar
  21. 21.
    N.T. Gorham, R.C. Woodward, T.G.St. Pierre, B.D. Terris, S. Sun, J. Magn. Magn. Mater. 295, 174–176 (2005)Google Scholar
  22. 22.
    G.F. Goya, T.S. Berqu, F.C. Fonseca, M.P. Moralesm, J. Appl. Phys. 94, 3520–3528 (2003)Google Scholar
  23. 23.
    A.P. Guimares, Magnetism and Magnetic Resonance in Solids (Wiley, New York, 1998)Google Scholar
  24. 24.
    O. Henkel, Phys. Stat. Solidi. 7, 919–929 (1964)CrossRefADSGoogle Scholar
  25. 25.
    O. Iglesias, A. Labarta, Phys. Rev. B 63, 184416 (2001)CrossRefADSGoogle Scholar
  26. 26.
    O. Iglesias, A. Labarta, X. Batlle, J. Phys.:Condens. Matter 19, 406232–406237 (2007)Google Scholar
  27. 27.
    I.S. Jacobs, C.P. Bean, in Fine Particles, Thin Films and Exchange Anisotropy (Effects of Finite Dimensions and Interfaces on the Basic Properties of Ferromagnets), ed. by G.T. Rado, H. Suhl. Magnetism, vol III (Academic Press, New York, 1963), p. 271–350Google Scholar
  28. 28.
    D. Kechrakos, K.N. Trohidou, J. Magn. Magn. Mater. 177, 943–944 (1998)CrossRefADSGoogle Scholar
  29. 29.
    P.E. Kelly, K. O’Grady, P.I. Mayo, R.W. Chantrell, IEEE Trans. Magn. 25, 3881–3883 (1989)CrossRefADSGoogle Scholar
  30. 30.
    R. Kikuchi, J. Appl. Phys. 27, 1352–1357 (1956)Google Scholar
  31. 31.
    A. Kkay, L.K. Varga, J. Appl. Phys. 97, 083901–083904 (2005)Google Scholar
  32. 32.
    R.H. Kodama, A.E. Berkowitz, Phys. Rev. B 59, 6321–6336 (1999)CrossRefADSGoogle Scholar
  33. 33.
    E. Kondorsky, J. Phys. Moscow 2, 161 (1940)Google Scholar
  34. 34.
    H. Kronmller, K.-D. Durst, G. Martinek, J. Magn. Magn. Mater. 69, 149–157 (1987)CrossRefADSGoogle Scholar
  35. 35.
    A. Labarta, O. Iglesias, L. Balcells, F. Badia, Phys. Rev. B 48, 10240–10246 (1993)CrossRefADSGoogle Scholar
  36. 36.
    Z. Li, S. Zhang, Phys. Rev. B 68, 024404–024410 (2003)CrossRefADSGoogle Scholar
  37. 37.
    F.E. Luborsky, J. Appl. Phys. 32, 171S–183S (1961)Google Scholar
  38. 38.
    S.A. Majetich, Y. Jin, Science 284, 470–473 (1999)CrossRefADSGoogle Scholar
  39. 39.
    J. Nogus, J. Sort, V. Langlais, V. Skumryev, S. Suriach, J.S. Muoz, M.D. Bar, Phys. Repts. 422, 65–117 (2005)ADSGoogle Scholar
  40. 40.
    N. Pinna, S. Grancharov, P. Beato, P. Bonville, M. Antonietti, M. Niederberger, Chem. Mater. 17, 3044–3049 (2005)CrossRefGoogle Scholar
  41. 41.
    B.R. Pujada, E.H.C.P. Sinnecker, A.M. Rossi, C.A. Ramos, A.P. Guimares, Phys. Rev. B 67, 024402–024406 (2003)CrossRefADSGoogle Scholar
  42. 42.
    S. Shtrikman, E.P. Wohlfarth, Phys. Lett. A 85, 467 (1981)CrossRefADSGoogle Scholar
  43. 43.
    R. Skomski, J.M.D. Coey, Permanent Magnetism (Institute of Physics Publishing, Bristol, 1999)Google Scholar
  44. 44.
    R. Skomski, J. Zhou, in Nanomagnetic Models, ed. by D. Sellmyer, R. Skomski. Advanced Magnetic Nanostructures (Springer, New York, 2006), pp. 41–90Google Scholar
  45. 45.
    J.C. Slonczewski, J. Magn. Magn. Mater. 159, L1–L7 (1996)CrossRefGoogle Scholar
  46. 46.
    E.C. Stoner, E.P. Wohlfarth, Phil. Trans. Roy. Soc. A 240, 599–642 (1948). Reprinted in IEEE Trans. Magn. 27, 3475–3518 (1991)Google Scholar
  47. 47.
    Z.Z. Sun, X.R. Wang, Phys. Rev. Lett. 97, 077205-1–077205-4 (2006)Google Scholar
  48. 48.
    C. Tannous, J. Gieraltowski, Eur. J. Phys. 29, 475–487 (2008)CrossRefGoogle Scholar
  49. 49.
    S. Thamm, J. Hesse, J. Magn. Magn. Mater. 154, 254–262 (1996)CrossRefADSGoogle Scholar
  50. 50.
    S. Thamm, J. Hesse, J. Magn. Magn. Mater. 184, 245–255 (1998)CrossRefADSGoogle Scholar
  51. 51.
    A. Thiaville, Phys. Rev. B 61, 12221–12232 (2000)CrossRefADSGoogle Scholar
  52. 52.
    C. Thirion, W. Wernsdorfer, M. Jamet, V. Dupuis, P. M\(\acute{\mathrm{e}}\)linon, A. Pérez, D. Mailly, J. Magn. Magn. Mater. 242–245, 993–995 (2002)Google Scholar
  53. 53.
    J.K. Vassiliou, V. Mehrotra, M.W. Russell, E.P. Giannelis, R.D. McMichael, R.D. Shull, R.F. Ziolo, J. Appl. Phys. 73, 5109–5116 (1993)Google Scholar
  54. 54.
    X.R. Wang, Z.Z. Sun, Phys. Rev. Lett. 98, 077201–077204 (2007)CrossRefADSGoogle Scholar
  55. 55.
    W. Weber, S. Riesen, H.C. Siegmann, Science 291, 1015–1018 (2001)CrossRefADSGoogle Scholar
  56. 56.
    W. Wernsdorfer, E.B. Orozco, B. Barbara, K. Hasselbach, A. Benoit, D. Mailly, B. Doudin, J. Meier, J.E. Wegrowe, J.P. Ansermet, N. Demoncy, H. Pascard, N. Demoncy, A. Loiseau, L. Franois, N. Duxin, M.P. Pileni, J. Appl. Phys. 81, 5543–5545 (1997)Google Scholar
  57. 57.
    E.P. Wohlfarth, J. Appl. Phys. 29, 595–596 (1958)Google Scholar
  58. 58.
    Q.F. Xiao, B.C. Choi, J. Rudge, Y.K. Hong, G. Donohoe, J. Appl. Phys. 101, 24306 (2007)CrossRefGoogle Scholar
  59. 59.
    J.G. Zhu, in Magnetization Reversal Dynamics, ed. by K.H.J. Buschow. Concise Encyclopedia of Magnetic and Superconducting Materials, 2nd edn. (Elsevier, Amsterdam, 2005), pp. 754–760Google Scholar
  60. 60.
    J.-G. Zhu, X. Zhu, Y. Tang, IEEE Trans. Magn. 44, 125–131 (2008)CrossRefMathSciNetADSGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  1. 1.Centro Brasileiro de Pesquisas Físicas (CBPF)Rio de Janeiro - RJBrasil/Brazil

Personalised recommendations