Skip to main content
  • 2345 Accesses

Abstract

Examination and imaging of the fundus, especially the macula, constitute an essential objective for diagnosis and follow-up.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Huang D, Swanson EA, Lin CP, Schuman JS, Stinson WG, Chang W, Hee MR, Flotte T, Gregory K, Puliafito CA. Optical coherence tomography. Science 1991;254:1178–1181.

    Article  PubMed  CAS  Google Scholar 

  2. Hee MR, Izatt JA, Swanson EA, Huang D, Schuman JS, Lin CP, Puliafito CA, Fujimoto JG. Optical coherence tomography of the human retina. Arch Ophthalmol 1995;113:325–332.

    PubMed  CAS  Google Scholar 

  3. Puliafito CA, Hee MR, Lin CP, Reichel E, Schuman JS, Duker JS, Izatt JA, Swanson EA, Fujimoto JG. Imaging of macular diseases with optical coherence tomography. Ophthalmology 1995;102:217–229.

    PubMed  CAS  Google Scholar 

  4. Toth CA, Narayan DG, Boppart SA, Hee MR, Fujimoto JG, Birngruber R, Cain CP, DiCarlo CD, Roach WP. A comparison of retinal morphology viewed by optical coherence tomography and by light microscopy. Arch Ophthalmol 1997;115:1425–1428.

    PubMed  CAS  Google Scholar 

  5. Pieroni CG, Witkin AJ, Ko TH, Fujimoto JG, Chan A, Schuman JS, Ishikawa H, Reichel E, Duker JS. Ultrahigh resolution optical coherence tomography in non-exudative age related macular degeneration. Br J Ophthalmol 2006;90:191–197.

    Article  PubMed  CAS  Google Scholar 

  6. Drexler, W., Fujimoto, J.G., State of the art in retinal optical coherence tomography. Progress in Retinal Eye Research, 2008,27,1,45–88.

    Article  Google Scholar 

  7. Drexler, W., Sattmarin, H., Hermann, B., et al, Enhanced visualization of macular pathology with the use of ultrahigh-resolution OCT. Arch Ophthalmol 2003;121:695–706.

    Article  PubMed  Google Scholar 

  8. Ergun, E., Hermann, B., Wirtitsch, M., Unterhuber, A., Ko, T.H., Sattmann, H., Scholda, C., Fujimoto, J.G., Stur, M., Drexler, W., Assessment of central visual function in Stargardt’s disease/fundus flavimaculatus with ultrahigh-resolution optical coherencetomography. Investigative Ophthalmology & Visual Science 2005;46:310–316.

    Article  Google Scholar 

  9. de Boer, J.F., Cense, B., Park, B.H., Pierce, C., Tearney, G.J., Bouma, B.E., Improves signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography. Optics Letters 2003;28:2067–2069.

    Article  PubMed  Google Scholar 

  10. Monson, B.K., Greenberg, P.B., Greenberg, E., Fujimoto, J.G., Srinivasan, V.J., Duker, J.S., High-speed, ultra-high-resolution optical coherence tomography of acute macular neuroretin-opathy. Br. J. Ophthalmol. 2007;91:119–120.

    Article  PubMed  CAS  Google Scholar 

  11. Schmidt-Erfurth, U., Leitgeb, R.A., Michels, S., Povazay, B., Sacu, S., Hermann, B., Ahlers, C., Sattmann, H., Scholda, C., Fercher, F., Drexler, W., Three-dimensional ultrahigh-resolution optical cohenrence tomography of macular diseases. Invest. Ophthalmol. Vis. Sci. 2005;46:3393–3402.

    Article  PubMed  Google Scholar 

  12. Považay, B., Hermann, B., Unterhuber, A.H.S., Zeiler, F., Morgan, J.E., Falkner-Radler, C., Glittenberg, C., Binder, S., Drexler, W., Three-dimensional optical coherence tomography at 1050nm vs. 800nm in retinal pathologies: enhanced performance and choroidal penetration in cataract patients. Journal of Biomedical Optics 2007, in press.

    Google Scholar 

  13. Fernandez, E.J., Drexler, W., Influence of ocular chromatic aberration and pupil size on transverse resolution in ophthalmic adaptive optics optical coherence tomography. Optics Express 2005:13:8184–8197.

    Article  PubMed  Google Scholar 

  14. Zawadzki, R.J., Jones, S.M., Olivier, S.S., Zhao, M.T., Bower, B.A., Izatt, J.A., Choi, S., Laut, S., Werner, J.S., Adaptive-optics optical coherence tomography for high-resolution and high-speed 3D retinal in vivo imaging. Optics Express 2005;13:8532–8546.

    Article  PubMed  Google Scholar 

  15. Zhang, Y., Cense, B., Rha, J., Jonnal, R.S., Gao, W., Zawadzki, R.J., Werner, J.S., Jones, S., Olivier, S., Miller, D.T., High-speed volumetric imaging of cone photoreceptors with adaptive optics spectral-domain optical coherence tomography. Optics Express 2006;14:4380–4394.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Medizin Verlag Heidelberg

About this paper

Cite this paper

Coscas, G. (2009). Principles of OCT Examination Techniques Main OCT Systems. In: Optical Coherence Tomography in Age-Related Macular Degeneration. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01467-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01467-3_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01468-0

  • Online ISBN: 978-3-642-01467-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics