Advertisement

Simulation und virtuelle Realität

  • Otto von Estorff
  • Marian Markiewicz
  • Ali Özkan
  • Olgierd Zaleski
  • Reinhard Blumrich
  • Klaus Genuit
  • André Fiebig
Chapter
  • 9.5k Downloads

Zusammenfassung

Mit Hilfe akustischer Berechnungen ist es möglich, aufwendige Messungen an Fahrzeugprototypen deutlich zu reduzieren. Dieses Kapitel gibt einen kurzen Überblick über die wichtigsten derzeit verfügbaren Methoden. Dabei wird zunächst auf Elementverfahren, wie die Finite-Elemente-Methode (FEM) und die Boundary-Elemente-Methode (BEM), näher eingegangen. Während diese vor allem im tieffrequenten Bereich eingesetzt werden, kommen bei höheren Frequenzen vermehrt Verfahren zum Einsatz, die auf Energieformulierungen beruhen. Exemplarisch wird hier die Funktionsweise und der Einsatz der Statistischen-Energie-Analyse (SEA) erläutert. Anhand von repräsentativen Beispielen werden die Einsatzmöglichkeiten und Grenzen der verschiedenen Verfahren aufgezeigt, wobei vor allem auch auf Vergleiche zwischen Rechnung und Messung eingegangen wird.

Abkürzungen

AAA

Aeroakustische Analogien

BEM

Boundary Element Method

CFD

Computational Fluid Dynamics

DES

Detached Eddy Simulation

DNS

Direkte Numerische Simulation

DS

Direkte Simulation

FEM

Finite Elemente Methode

HFE-WBM

Hybride FEM-WBM

LBM

Lattice-Boltzmann-Methode

LEE

Linearised Euler Equations

LES

Large Eddy Simulation

NSG

Navier-Stokes-Gleichungen

RANS

Reynolds averaged Navier-Stokes

SEA

Statistische Energie-Analyse

URANS

Unsteady Reynolds averaged Navier-Stokes

VLES

Very Large Eddy Simulation

WBM, WBT

Wave-Based Method/Technique

Literatur

  1. Adam J-L, Ricot D, Dubiel F, Guy C (2008) Aeroacoustic simulation of automotive ventilation outlets, Proceedings of Acoustics ’08, Paris, 29.06.–04.07.2008Google Scholar
  2. Agnantiaris JP, Polyzos D, Beskos DE (1998) Three-dimensional structural vibration analysis by the Dual Reciprocity BEM, Computational Mechanics, 21 (4/5), 372–381zbMATHCrossRefGoogle Scholar
  3. Amman A, Meier R, Mouch T, Gu P (2005) A survey of Sound and Vibration Interaction, SAE Noise and Vibration Conference Proceedings‘05, Traverse City, Michigan, USAGoogle Scholar
  4. Antes H (1988) Anwendung der Methode der Randelemente in der Elastodynamik und der Fluiddynamik. Teubner-Verlag, StuttgartCrossRefGoogle Scholar
  5. Astley RJ, Macaulay GJ, Coyette JP (1994) Mapped Wave Envelope Elements for Acoustical Radiation and Scattering, Journal of Sound and Vibration 170 (1), 97–118zbMATHCrossRefGoogle Scholar
  6. Augustin K, Paul M, Späth M, Brotz F, Schrumpf M (2007) Aeroakustik von Fahrzeugklimageräten, Tagungsband der DAGA ’07, 19. bis 22. März 2007 in Stuttgart. Berlin: Deutsche Gesellschaft für Akustik e.V., ISBN 978-3-9808659-3-7Google Scholar
  7. Bailly C, Lafon P, Candel S (1995) A stochastic approach to compute noise generation and radiation of free turbulent flows, AIAA 95-092Google Scholar
  8. Banerjee PK, Butterfield R (1981) Boundary Element Methods in Engineering Science, McGraw-Hill Book Company, New York, USAzbMATHGoogle Scholar
  9. Bathe KJ (1982) Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USAGoogle Scholar
  10. Béchara W, Bailly C, Lafon P, Candel S (1994) Stochastic approach to noise modelling for free turbulent flows, American Institute of Aeronautics and Astronautics Journal, 32 (4), 455–463zbMATHGoogle Scholar
  11. Bendat JS, Piersol AG (1986) Random Data: Analysis and Measurement Procedures, John Wiley & Sons, Inc., New York, USAzbMATHGoogle Scholar
  12. Blumrich R (2006) Berechnungsmethoden für die Aeroakustik von Fahrzeugen, ATZ/MTZ-Konferenz Akustik – Akustik zukünftiger Fahrzeuge, Stuttgart, 17.–18.05.2006Google Scholar
  13. Blumrich R (2007) Numerische Aeroakustik, Workshop „Mess- und Analysetechnik in der Fahrzeugakustik“, FKFS, Stuttgart, 09.–10.10.2007Google Scholar
  14. Blumrich R (2008a) Vehicle Aeroacoustics – Today and Future Developments, 5th International Styrian Noise, Vibration & Harshness Congress „Optimising NVH in future vehicles“ Graz, ÖsterreichGoogle Scholar
  15. Blumrich R (2008b) Fahrzeugaeroakustik – Experiment und Simulation, Kurzlehrgang Strömungsinduzierter Schall, Friedrich-Alexander-Universität Erlangen-Nürnberg, 19.–21.2.2008Google Scholar
  16. Blumrich R, Heimann D (2002) A Linearized Eulerian Sound Propagation Model for Studies of Complex Meteorological Effects, Journal of the Acoustical Society of America, 112 (2), 446–455Google Scholar
  17. Blumrich R, Crouse B, Freed D, Hazir A, Balasubramanian G (2007) Untersuchung der Kopplungseffekte Innenraum-Kofferraum beim Schiebedachwummern an Hand eines SAE-Modells, Tagungsband der DAGA ’07, 19. bis 22. März 2007 in Stuttgart. Berlin: Deutsche Gesellschaft für Akustik e.V., ISBN 978-3-9808659-3-7Google Scholar
  18. Bortz J, Döring N (2002) Forschungsmethoden und Evaluationen., Springer Verlag, Berlin, Heidelberg, DeutschlandGoogle Scholar
  19. Brenner G (2006) Lattice Boltzmann Methods: Theory an Applications, In: Wiedemann J, Hucho WH (Hrsg.) Progress in Vehicle Aerodynamics IV – Numerical Methods. Expert-Verlag, Renningen, ISBN-10: 3-8169-2623-1Google Scholar
  20. Brinkmeier M, Nackenhorst U, Estorff O von, Petersen S, Biermann J (2006) Simulation and Analysis of Tire Road Noise Using a Finite Element Approach. EuroNoise 2006 Conference, Tampere, FinnlandGoogle Scholar
  21. Brinkmeier M, Nackenhorst U, Petersen S, Estorff O von (2008) A Numerical Model for the Simulation of Tire Rolling Noise, Journal of Sound Vibration, 309, 20–39CrossRefGoogle Scholar
  22. Burnett DS (1994) A Three-Dimensional Acoustic Infinite Element Based on Prolate Spheroidal Multipole Expansion, Journal of the Acoustical Society of America, 96 (5), 2798–2816MathSciNetCrossRefGoogle Scholar
  23. Citarella R, Federico L, Cicatiello A (2007) Modal acoustic transfer vector approach in a FEM-BEM vibro-acoustic analysis. Engineering Analysis with Boundary Elements, 31, 248–258, ElsevierCrossRefGoogle Scholar
  24. Connelly T, Cordioli J, Fung K (2009) Validation of SEA Predicted Vehicle Noise Reduction via Exterior Loading Created by Fast Multipole BEM, SAE-International Dokument 2009-01-2200Google Scholar
  25. Coyette JP, Guisset P (1988) Finite Element Methods for Interior Acoustics, Proceedings of the 2nd International Conference on Methodology and Innovations in Automotive Experimentations, Florence, ItalienGoogle Scholar
  26. Cremer L, Heckl M (1996) Körperschall, 2. Aufl., SpringerGoogle Scholar
  27. Cremers L, Fyfe KR, Coyette JP (1994) A Variable Order Infinite Acoustic Wave Envelope Element. Journal of Sound and Vibration, 171, 483–508zbMATHCrossRefGoogle Scholar
  28. Cremers L, Tournour M, McCulloch CF (2001) Panel Acoustic Contribution Analysis based on Acoustic Transfer Vectors, Inter Noise 2001, The Hague, NiederlandeGoogle Scholar
  29. Crouse B, Senthooran S, Balasubramanian G, Freed D (2007a) Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting, SAE International, 2007-01-2403Google Scholar
  30. Crouse B, Freed D, Senthooran S, Ullrich F, Fertl C (2007b) Numerical Investigation of Underbody Aeroacoustic Noise of Automobils, SAE-Paper 2007-01-2400Google Scholar
  31. Curle N (1955) The Influence of Solid Boundaries upon Aerodynamic Sound, Proceedings of the Royal Society, 231(A), 505–514, London, UKGoogle Scholar
  32. Desmet W, Sas P, Vandepitte D (1998) Performance of a Wave Based Prediction Technique for 3D Coupled Vibro-acoustic Analysis, Proceedings of EuroNoise 98, 3, München, DeutschlandGoogle Scholar
  33. Donders S, Hadjit R, Hermans L, Brughmans M, Desmet W (2006) A Wave-Based Substructuring Approach for Fast Modification Predictions and Industrial Vehicle Optimization, Proceedings of ISMA 2006, 1901–1912, Leuven, BelgienGoogle Scholar
  34. Dreyer D, Petersen S, Estorff O von (2006) Effectiveness and Robustness of Improved Infinite Elements for Exterior Acoustics. Computer Methods in Applied Mechanics and Engineering, 195, 3591–3607Google Scholar
  35. Duncan DR (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Chap. 2.2.3, Springer-Verlag, New York, USAGoogle Scholar
  36. ESI Group (2004) Auto SEA 2 Training CourseGoogle Scholar
  37. Estorff O von (Editor) (2000) Boundary Elements in Acoustics, Advances & Applications. WIT Press, Southampton, UKzbMATHGoogle Scholar
  38. Estorff O von (2003) Efforts to Reduce Computation Time in Numerical Acoustics – an Overview, Acta Acustica, 89, 1–13Google Scholar
  39. Estorff O von, Zaleski O (2001) Effektive Berechnung von Schallfeldern mittels akustischer Transfervektoren. 19th CAD-FEM Users’ Meeting 2001, PotsdamGoogle Scholar
  40. Estorff O von, Wandel M (2003) Numerical Modelling of Sound Transmission Loss of Interior Aircraft Lining Elements. Tenth International Congress on Sound and Vibration ICSV 10, Stockholm, SchwedenGoogle Scholar
  41. Estorff O von, Belke L, Irrgang A (1992) Boundary Elemente zur Untersuchung der Schallabstrahlung von Fahrzeugkomponenten, Berechnung im Automobilbau, WürzburgGoogle Scholar
  42. Estorff O von, König T, Zaleski O (2004a) Validation of Calculations in Acoustics Using a Modal Expansion Approach, ICSV 11, St. Petersburg, RusslandGoogle Scholar
  43. Estorff O von, Markiewicz M, May RJ, Zaleski O (2004b) Sound Radiation of a Gear Box Using Acoustic Transfer Functions. Tagungsband DAGA 2004, Straßburg, FrankreichGoogle Scholar
  44. Estorff O von, Markiewicz M, May RJ, Zaleski O (2006) Optimierung der Schallabstrahlung eines Pkw-Getriebes. Tagungsband DAGA 2006, BraunschweigGoogle Scholar
  45. European Research Project Obelics (2002) Objective Evaluation of Interior Car Sound (OBELICS). Brite-Euram BE 96-3727, 1999–2002Google Scholar
  46. Fahy F (1985) Sound and Structural Vibration, Academic Press, London, UKGoogle Scholar
  47. Farassat F, Myers MK (1988) Extension of Kirchhoff’s Formula to Radiation from Moving Surfaces, Journal of Sound and Vibration, 123 (3), 451–460MathSciNetzbMATHCrossRefGoogle Scholar
  48. Ffowcs Williams JE, Hawkings DL (1969) Sound Generation by Turbulence and Surfaces in Arbitrary Motion, Philosophical Transactions of the Royal Society, 264(A), 321–342, London, UKzbMATHGoogle Scholar
  49. Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS): Homepage „Berechnung Fahrzeugakustik“; Quelle: http://www.fkfs.de/deutsch/kraftfahrwesen/ fahrzeugakustik-und-schwingungen/berechnungsmethoden/ am 15.01.2009 um 16:20 UhrGoogle Scholar
  50. Gaul L, Fiedler Ch (1997) Methode der Randelemente in Statik und Dynamik. Vieweg, BraunschweigzbMATHCrossRefGoogle Scholar
  51. Gaul L, Kögl M, Wagner M (2003) Boundary Element Methods for Engineers and Scientists. Springer, Berlin, DeutschlandzbMATHGoogle Scholar
  52. Genechten B van, Pluymers B (2009) A Hybrid Wave Based – Modally Reduced Finite Element Method for the Efficient Analysis of Low- and Mid-Frequency Car Cavity Acoustics, SAE-International Dokument 2009-01-2214Google Scholar
  53. Genell A, Västfjäll D (2007) Vibrations Can Have Both Negative and Positive Effects on the Perception of Sound. International Journal of Vehicle Noise and Vibration, 3 (2), 172–184CrossRefGoogle Scholar
  54. Genuit K (2008) Vehicle Interior Noise. A combination of Sound, Vibration and Interactivity. Noise-Con ’08, Dearborn, Michigan, USAGoogle Scholar
  55. Genuit K, Poggenburg J (1998) The Influence of Vibrations on the Subjective Judgement of Vehicle’s interior noise. Noise-Con ’98, Ypsilanti, Michigan, USAGoogle Scholar
  56. Genuit K, Fiebig A (2005) Neue Verfahren zum Benchmarking von Fahrzeuginnengeräuschen. Haus der Technik 2005, EssenGoogle Scholar
  57. Gérard F, Tournour M, El Masri N, Cremers L, Felice M, Selmane A (2001) Numerical Modeling of Engine Noise Radiation through the use of Acoustic Transfer Vectors – A Case Study. Journal of Sound and Vibration, 57 (4), 473–500Google Scholar
  58. Glegg SA (1999) Recent Advances in Aeroacoustics: The Influence of Computational Fluid Dynamics, 6th International Congress on Sound and Vibration, Kopenhagen, DänemarkGoogle Scholar
  59. Goldstein ME (1976) Aeroacoustics, McGraw-Hill Book Company, New YorkzbMATHGoogle Scholar
  60. Guisset P, Brughmans M (1995) Modal Expansion of Experimental Vibration Data for Acoustic Radiation Prediction, IMAC-13, Nashville, USACrossRefGoogle Scholar
  61. Gumerov NA, Duraiswami R (2004) Fast Multipol Methods for the Helmholtz Equation in Three Dimensions. Elsevier, Heidelberg, DeutschlandGoogle Scholar
  62. van Hal B, Vanmaele C, Silar P, Priebsch H-H (2004) Hybrid Finite Element – Wave based Method for Steady-state Acoustic analysis, Proceedings of ISMA, September 2004Google Scholar
  63. Herpe F van (2001) Numerical Prediction of a Whole Car Vibro-Acoustic Behavior at Low Frequencies, SAE-International Dokument 2001-01-1521Google Scholar
  64. Heuer R, Irschik H, Ziegler F (1990) A BEM-Formulation of Nonlinear Plate Vibrations, Proceedings of IUTAM/IACM-Symposium on Discretization Methods in Structural Mechanics, Kuhn G et al. (Hrsg.), 341–351, Springer, Berlin, DeutschlandGoogle Scholar
  65. Howe MS (1975) Contributions to the Theory of Aerodynamic Sound, with Application to Excess Jet Noise and the Theory of the Flute, Journal of Fluid Mechanics, 71, 625–673Google Scholar
  66. Ihlenburg F (1998) Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences, 132, Springer, New York, USACrossRefGoogle Scholar
  67. Jee S-H, Yi J-Ch, Park J-K (2000) The Comparison of the BEM and FEM Techniques for the Interior Noise Analysis of the Passenger Car, 2nd MSC Worldwide Automotive ConferenceGoogle Scholar
  68. Kaltenbacher M (2007) Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin, DeutschlandGoogle Scholar
  69. Kang SW, Lee JM, Kim SH (2000) Structural-Acoustic Coupling Analysis of the Vehicle Passenger Compartment with the Roof, Air-Gap, and Trim Boundary, Journal of Vibration and Acoustics, 122 (3), 196–202CrossRefGoogle Scholar
  70. Klemenz M, Estorff O von, Heckl M (1995) Schallabstrahlung eines Katalysators mit der BEM und dem Rayleigh-Verfahren, DAGA 95, Saarbrücken, DeutschlandGoogle Scholar
  71. Kousuke N, Junji Y (2006) Method of Transfer Path Analysis for Vehicle Interior Sound with no Excitation Experiment, FISITA 2006 World Automotive CongressGoogle Scholar
  72. Kühnel W, Paul M, Schaake N, Schrumpf M (2004) Geräuschreduzierung in Fahrzeug-Klimaanlagen, Automobil-Technische Zeitschrift, 12, 2004Google Scholar
  73. Lighthill MJ (1951a) On Sound Generated Aerodynamically – I. General theory, Proceedings of the Royal Society, A211, London, UKGoogle Scholar
  74. Lighthill MJ (1951b) On sound generated aerodynamically – II. Turbulence as a source of sound, Proceedings of the Royal Society, 222, London, UKGoogle Scholar
  75. Lilley GM (1973) On the Noise from Air Jets, Noise Mechanisms, AGARD CP 131Google Scholar
  76. Linden PJG van der (1999) Modular Vehicle Noise and Vibration Development SAE-International Dokument 1999-01-1689Google Scholar
  77. LMS International (2000) SYSNOISE Rev 5.5, User’s Manual. Leuven, BelgienGoogle Scholar
  78. LMS Numerical Technologies N.V. (2007) SYSNOISE-Manual, Rev. 5.6 F., Leuven, BelgienGoogle Scholar
  79. Lyon R (1975) Statistical Energy Analysis of Dynamical Systems, MIT Press, Cambridge, Massachusets, USAGoogle Scholar
  80. Lyon RH, Dejong RG (1998) Theory and Application of Statistical Energy Analysis, 2. Aufl., Buttersworths-Heimann, Boston, USAGoogle Scholar
  81. Maestrello L (1967) Use of Turbulent Model to Calculate the Vibration and Radiation Responses of a Panel, with Practical Suggestions for Reducing Sound Level, Journal of Sound and Vibration, 5 (3), 13–38CrossRefGoogle Scholar
  82. Martinus F, Herrin DW, Seybert AF (2003) Practical Considerations in Reconstructing the Surface Vibration using Inverse Numerical Acoustics, SAE Technical Paper 03NVC-113, Warrendale, USAGoogle Scholar
  83. Mencik J-M, Ichchou MN (2008) A substructuring technique for finite element wave propagation in multi-layered systems, Computer Methods in Applied Mechanics and Engineering, 197 (6–8), 505–523Google Scholar
  84. Menzel S, Dauenhauer T, Fastl H (2009) Crying Colours and Their Influence on Loudness Judgments. DAGA/NAG ’09, Rotterdam, NiederlandeGoogle Scholar
  85. Migeot J-L (1998) Méthodes numériques pour la conception vibro-acoustique des structures, Ph.D. Thesis, Université Libre de Bruxelles, BelgienGoogle Scholar
  86. Mitschke M, Klingner B (1998) Schwingungskomfort im Kraftfahrzeug, Automobiltechnische Zeitschrift, 100, 18–24Google Scholar
  87. Möhring W (1978) On Vortex Sound at Low Mach Number, Journal of Fluid Mechanics, 85, 685–691Google Scholar
  88. Nettelbeck C, Riemann D, Sellerbeck P (2004) Road Noise Analysis Using Binaural Time Domain Approach, CFA/DAGA ’04, Straßburg, FrankreichGoogle Scholar
  89. OBELICS (2002) EU-Forschungsprojekt “Objective Evaluation of Interior Car Sound (Obelics)” Brite EURAM BE-96-3727, 1999–2002Google Scholar
  90. Ochmann M, Makarov S (1998) Ein iteratives Randelementverfahren zur Berechnung der hochfrequenten Schallstreuung an dreidimensionalen Strukturen. Tagungsband DAGA 98, Zürich, SchweizGoogle Scholar
  91. Özkan A (2001) Schalldrucksimulation im Fahrgastraum eines Cabrio-Fahrzeugs mit Hilfe der statistischen Energieflussanalyse bei aeroakustischer Anregung, Vortrag im Haus der Technik, EssenGoogle Scholar
  92. Özkan A (2003) Einsatz der statistischen Energieflussanalyse bei Porsche in der Akustikentwicklung, DAGA 2003, AachenGoogle Scholar
  93. Özkan A (2007) Statistische Energieflussanalyse: ein Werkzeug zur Akustik Simulation im hochfrequenten Bereich. Workshop „Mess- und Analysetechnik in der Fahrzeugakustik“, Universität Stuttgart, FKFSGoogle Scholar
  94. Paul S, Schulte-Fortkamp B, Genuit K (2004) Sound Quality and Soundscape: A New Qualitative Approach to Evaluate Target Sounds. Inter-Noise ’04, Prag, Tschechische RepublikGoogle Scholar
  95. Pierce AD (1981) Acoustics: An Introduction to Its Physical Principles and Applications, McGraw-Hill Book Company, New York, USAGoogle Scholar
  96. Read A, Mendonca F, Scharm Ch, Tournour M (2005) Optimal Sunroof Buffeting Predictions with Compressibility and Surface Impedance Effects, American Institute of Aeronautics and Astraunotics Paper 2005-2859, 1–13Google Scholar
  97. Riemann D, Nettelbeck C, Sottek R (2006) Hybrider Ansatz zur interaktiven Auralisierung des Antriebsstrangs mittels gemessener und berechneter Anregungsdaten, DAGA ’06, Braunschweig, DeutschlandGoogle Scholar
  98. Sato T, Maeda S, Yano T (2006) An Experiment on Whole-Body Vibration Perception Threshold of People Exposed to Noise. Inter-Noise ’06, Proceedings, Honolulu, Hawaii, USAGoogle Scholar
  99. Seibert W, Ehlen M, Sovani S (2004) Simulation of Transient Aerodyanamics-Predicting Buffting, Roaring and Whistling using CFD, 5th Mira International Vehicle Aerodynamics Conference Heritage Motor Center, Warwick, 13.-14.10.2004Google Scholar
  100. Senthooran S, Duncan B, Freed D, Hendriana D, Powell R, Nalevanko J (2007) Design of Roof-Rack Crossbars for Production Automobils to Reduce Howl Noise using a Lattice Boltzmann Scheme, SAE-Paper 2007-01-2398Google Scholar
  101. Senthooran S, Crouse B, Balasubramanian G, Freed D, Shin SR, Ih K-D (2008) Effect of Surface Mounted Microphones on Automobile Side Glass Pressure Fluctuations, Proceedings of 7th MIRA International Vehicle Aerodynamics Conference, Coventry 22.–23.10.2008Google Scholar
  102. Sköld A, Västfjäll D, Veljanovska I (2005) Vibrational Influence on Product Sound Quality in Cars. Forum Acusticum ’05, Budapest, HungaryGoogle Scholar
  103. Sottek R, Philippen B (2009) Characterizing Tire and Wind Noise Using Operational Path Analysis. NAG/DAGA ’09, Rotterdam, NiederlandeGoogle Scholar
  104. Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES approach, 1st AFOSR International Conference on DNS/LES, Aug. 4–8, 1997, Ruston, LA. Advances in DNS/LES, In: Liu C, Liu Z (Hrsg.), Greyden Press, Columbus, Ohio, USAGoogle Scholar
  105. Tournour M, Cremers L, Guisset P, Augusztinovicz F, Márki F (2000) Inverse Numerical Acoustics Based on Acoustic Transfer Vectors. Proceedings of the 7th International Congress on Sound and Vibration, Garmisch-Patenkirchen, 2069–2076Google Scholar
  106. Tournour M, Brux P, Mas P, Wang X, McCulloch CF, Vignassa P (2003) Inverse Numerical Acoustics of a Truck Engine. SIAM Journal of Numerical Analysis, 63, 706–721Google Scholar
  107. Ullrich F (2008) New Possibilities for Aeroacoustic Optimization in the Underbody Region of Vehicles, In: Wiedemann J (Hrsg.), Progress in Vehicle Aerodynamics and Thermal Management V. Expert-Verlag, RenningenGoogle Scholar
  108. Viersbach U, Ford R, Guisset P, Rossion JP, Wynendaele H (1994) Comparing acoustic measurements with combined MSC/Nastran-Sysnoise sound radiation predictions of an engine block, MSC World User’s Conference, Florida, USAGoogle Scholar
  109. Zaleski O (2009) Verfahren zur Aufwandsreduzierung bei der Berechnung der Schallabstrahlung von Strukturen. Shaker Verlag, AachenGoogle Scholar
  110. Zaleski O, Cremers L, Estorff O von (2001) Zur Anwendung akustischer Übertragungsfunktionen bei der Berechnung von Schallfeldern mit der Boundary-Elemente-Methode. Tagungsband DAGA 2001, HamburgGoogle Scholar
  111. Zeichert K (1998) Kombinatorische Wirkungen von Bahnlärm und Bahnerschütterungen durch Eisenbahnverkehr und ihre Wirkungen auf Anwohner. Teil 1: Zum Zusammenwirken von Erschütterungs- und Geräuschbelastung. Zeitschrift für Lärmbekämpfung, 41, 43–51, Springer-VerlagGoogle Scholar

Copyright information

© Springer-Berlin Heidelberg 2010

Authors and Affiliations

  • Otto von Estorff
    • 1
  • Marian Markiewicz
  • Ali Özkan
  • Olgierd Zaleski
  • Reinhard Blumrich
  • Klaus Genuit
  • André Fiebig
  1. 1.Institut für Modellierung und BerechnungTechnische Universität Hamburg-HarburgHamburgDeutschland

Personalised recommendations