Sound-Engineering im Automobilbereich pp 501-576 | Cite as
Simulation und virtuelle Realität
- 9.5k Downloads
Zusammenfassung
Mit Hilfe akustischer Berechnungen ist es möglich, aufwendige Messungen an Fahrzeugprototypen deutlich zu reduzieren. Dieses Kapitel gibt einen kurzen Überblick über die wichtigsten derzeit verfügbaren Methoden. Dabei wird zunächst auf Elementverfahren, wie die Finite-Elemente-Methode (FEM) und die Boundary-Elemente-Methode (BEM), näher eingegangen. Während diese vor allem im tieffrequenten Bereich eingesetzt werden, kommen bei höheren Frequenzen vermehrt Verfahren zum Einsatz, die auf Energieformulierungen beruhen. Exemplarisch wird hier die Funktionsweise und der Einsatz der Statistischen-Energie-Analyse (SEA) erläutert. Anhand von repräsentativen Beispielen werden die Einsatzmöglichkeiten und Grenzen der verschiedenen Verfahren aufgezeigt, wobei vor allem auch auf Vergleiche zwischen Rechnung und Messung eingegangen wird.
Abkürzungen
- AAA
Aeroakustische Analogien
- BEM
Boundary Element Method
- CFD
Computational Fluid Dynamics
- DES
Detached Eddy Simulation
- DNS
Direkte Numerische Simulation
- DS
Direkte Simulation
- FEM
Finite Elemente Methode
- HFE-WBM
Hybride FEM-WBM
- LBM
Lattice-Boltzmann-Methode
- LEE
Linearised Euler Equations
- LES
Large Eddy Simulation
- NSG
Navier-Stokes-Gleichungen
- RANS
Reynolds averaged Navier-Stokes
- SEA
Statistische Energie-Analyse
- URANS
Unsteady Reynolds averaged Navier-Stokes
- VLES
Very Large Eddy Simulation
- WBM, WBT
Wave-Based Method/Technique
Literatur
- Adam J-L, Ricot D, Dubiel F, Guy C (2008) Aeroacoustic simulation of automotive ventilation outlets, Proceedings of Acoustics ’08, Paris, 29.06.–04.07.2008Google Scholar
- Agnantiaris JP, Polyzos D, Beskos DE (1998) Three-dimensional structural vibration analysis by the Dual Reciprocity BEM, Computational Mechanics, 21 (4/5), 372–381zbMATHCrossRefGoogle Scholar
- Amman A, Meier R, Mouch T, Gu P (2005) A survey of Sound and Vibration Interaction, SAE Noise and Vibration Conference Proceedings‘05, Traverse City, Michigan, USAGoogle Scholar
- Antes H (1988) Anwendung der Methode der Randelemente in der Elastodynamik und der Fluiddynamik. Teubner-Verlag, StuttgartCrossRefGoogle Scholar
- Astley RJ, Macaulay GJ, Coyette JP (1994) Mapped Wave Envelope Elements for Acoustical Radiation and Scattering, Journal of Sound and Vibration 170 (1), 97–118zbMATHCrossRefGoogle Scholar
- Augustin K, Paul M, Späth M, Brotz F, Schrumpf M (2007) Aeroakustik von Fahrzeugklimageräten, Tagungsband der DAGA ’07, 19. bis 22. März 2007 in Stuttgart. Berlin: Deutsche Gesellschaft für Akustik e.V., ISBN 978-3-9808659-3-7Google Scholar
- Bailly C, Lafon P, Candel S (1995) A stochastic approach to compute noise generation and radiation of free turbulent flows, AIAA 95-092Google Scholar
- Banerjee PK, Butterfield R (1981) Boundary Element Methods in Engineering Science, McGraw-Hill Book Company, New York, USAzbMATHGoogle Scholar
- Bathe KJ (1982) Finite Element Procedures in Engineering Analysis. Prentice-Hall, Englewood Cliffs, New Jersey, USAGoogle Scholar
- Béchara W, Bailly C, Lafon P, Candel S (1994) Stochastic approach to noise modelling for free turbulent flows, American Institute of Aeronautics and Astronautics Journal, 32 (4), 455–463zbMATHGoogle Scholar
- Bendat JS, Piersol AG (1986) Random Data: Analysis and Measurement Procedures, John Wiley & Sons, Inc., New York, USAzbMATHGoogle Scholar
- Blumrich R (2006) Berechnungsmethoden für die Aeroakustik von Fahrzeugen, ATZ/MTZ-Konferenz Akustik – Akustik zukünftiger Fahrzeuge, Stuttgart, 17.–18.05.2006Google Scholar
- Blumrich R (2007) Numerische Aeroakustik, Workshop „Mess- und Analysetechnik in der Fahrzeugakustik“, FKFS, Stuttgart, 09.–10.10.2007Google Scholar
- Blumrich R (2008a) Vehicle Aeroacoustics – Today and Future Developments, 5th International Styrian Noise, Vibration & Harshness Congress „Optimising NVH in future vehicles“ Graz, ÖsterreichGoogle Scholar
- Blumrich R (2008b) Fahrzeugaeroakustik – Experiment und Simulation, Kurzlehrgang Strömungsinduzierter Schall, Friedrich-Alexander-Universität Erlangen-Nürnberg, 19.–21.2.2008Google Scholar
- Blumrich R, Heimann D (2002) A Linearized Eulerian Sound Propagation Model for Studies of Complex Meteorological Effects, Journal of the Acoustical Society of America, 112 (2), 446–455Google Scholar
- Blumrich R, Crouse B, Freed D, Hazir A, Balasubramanian G (2007) Untersuchung der Kopplungseffekte Innenraum-Kofferraum beim Schiebedachwummern an Hand eines SAE-Modells, Tagungsband der DAGA ’07, 19. bis 22. März 2007 in Stuttgart. Berlin: Deutsche Gesellschaft für Akustik e.V., ISBN 978-3-9808659-3-7Google Scholar
- Bortz J, Döring N (2002) Forschungsmethoden und Evaluationen., Springer Verlag, Berlin, Heidelberg, DeutschlandGoogle Scholar
- Brenner G (2006) Lattice Boltzmann Methods: Theory an Applications, In: Wiedemann J, Hucho WH (Hrsg.) Progress in Vehicle Aerodynamics IV – Numerical Methods. Expert-Verlag, Renningen, ISBN-10: 3-8169-2623-1Google Scholar
- Brinkmeier M, Nackenhorst U, Estorff O von, Petersen S, Biermann J (2006) Simulation and Analysis of Tire Road Noise Using a Finite Element Approach. EuroNoise 2006 Conference, Tampere, FinnlandGoogle Scholar
- Brinkmeier M, Nackenhorst U, Petersen S, Estorff O von (2008) A Numerical Model for the Simulation of Tire Rolling Noise, Journal of Sound Vibration, 309, 20–39CrossRefGoogle Scholar
- Burnett DS (1994) A Three-Dimensional Acoustic Infinite Element Based on Prolate Spheroidal Multipole Expansion, Journal of the Acoustical Society of America, 96 (5), 2798–2816MathSciNetCrossRefGoogle Scholar
- Citarella R, Federico L, Cicatiello A (2007) Modal acoustic transfer vector approach in a FEM-BEM vibro-acoustic analysis. Engineering Analysis with Boundary Elements, 31, 248–258, ElsevierCrossRefGoogle Scholar
- Connelly T, Cordioli J, Fung K (2009) Validation of SEA Predicted Vehicle Noise Reduction via Exterior Loading Created by Fast Multipole BEM, SAE-International Dokument 2009-01-2200Google Scholar
- Coyette JP, Guisset P (1988) Finite Element Methods for Interior Acoustics, Proceedings of the 2nd International Conference on Methodology and Innovations in Automotive Experimentations, Florence, ItalienGoogle Scholar
- Cremer L, Heckl M (1996) Körperschall, 2. Aufl., SpringerGoogle Scholar
- Cremers L, Fyfe KR, Coyette JP (1994) A Variable Order Infinite Acoustic Wave Envelope Element. Journal of Sound and Vibration, 171, 483–508zbMATHCrossRefGoogle Scholar
- Cremers L, Tournour M, McCulloch CF (2001) Panel Acoustic Contribution Analysis based on Acoustic Transfer Vectors, Inter Noise 2001, The Hague, NiederlandeGoogle Scholar
- Crouse B, Senthooran S, Balasubramanian G, Freed D (2007a) Computational Aeroacoustics Investigation of Automobile Sunroof Buffeting, SAE International, 2007-01-2403Google Scholar
- Crouse B, Freed D, Senthooran S, Ullrich F, Fertl C (2007b) Numerical Investigation of Underbody Aeroacoustic Noise of Automobils, SAE-Paper 2007-01-2400Google Scholar
- Curle N (1955) The Influence of Solid Boundaries upon Aerodynamic Sound, Proceedings of the Royal Society, 231(A), 505–514, London, UKGoogle Scholar
- Desmet W, Sas P, Vandepitte D (1998) Performance of a Wave Based Prediction Technique for 3D Coupled Vibro-acoustic Analysis, Proceedings of EuroNoise 98, 3, München, DeutschlandGoogle Scholar
- Donders S, Hadjit R, Hermans L, Brughmans M, Desmet W (2006) A Wave-Based Substructuring Approach for Fast Modification Predictions and Industrial Vehicle Optimization, Proceedings of ISMA 2006, 1901–1912, Leuven, BelgienGoogle Scholar
- Dreyer D, Petersen S, Estorff O von (2006) Effectiveness and Robustness of Improved Infinite Elements for Exterior Acoustics. Computer Methods in Applied Mechanics and Engineering, 195, 3591–3607Google Scholar
- Duncan DR (1999) Numerical Methods for Wave Equations in Geophysical Fluid Dynamics, Chap. 2.2.3, Springer-Verlag, New York, USAGoogle Scholar
- ESI Group (2004) Auto SEA 2 Training CourseGoogle Scholar
- Estorff O von (Editor) (2000) Boundary Elements in Acoustics, Advances & Applications. WIT Press, Southampton, UKzbMATHGoogle Scholar
- Estorff O von (2003) Efforts to Reduce Computation Time in Numerical Acoustics – an Overview, Acta Acustica, 89, 1–13Google Scholar
- Estorff O von, Zaleski O (2001) Effektive Berechnung von Schallfeldern mittels akustischer Transfervektoren. 19th CAD-FEM Users’ Meeting 2001, PotsdamGoogle Scholar
- Estorff O von, Wandel M (2003) Numerical Modelling of Sound Transmission Loss of Interior Aircraft Lining Elements. Tenth International Congress on Sound and Vibration ICSV 10, Stockholm, SchwedenGoogle Scholar
- Estorff O von, Belke L, Irrgang A (1992) Boundary Elemente zur Untersuchung der Schallabstrahlung von Fahrzeugkomponenten, Berechnung im Automobilbau, WürzburgGoogle Scholar
- Estorff O von, König T, Zaleski O (2004a) Validation of Calculations in Acoustics Using a Modal Expansion Approach, ICSV 11, St. Petersburg, RusslandGoogle Scholar
- Estorff O von, Markiewicz M, May RJ, Zaleski O (2004b) Sound Radiation of a Gear Box Using Acoustic Transfer Functions. Tagungsband DAGA 2004, Straßburg, FrankreichGoogle Scholar
- Estorff O von, Markiewicz M, May RJ, Zaleski O (2006) Optimierung der Schallabstrahlung eines Pkw-Getriebes. Tagungsband DAGA 2006, BraunschweigGoogle Scholar
- European Research Project Obelics (2002) Objective Evaluation of Interior Car Sound (OBELICS). Brite-Euram BE 96-3727, 1999–2002Google Scholar
- Fahy F (1985) Sound and Structural Vibration, Academic Press, London, UKGoogle Scholar
- Farassat F, Myers MK (1988) Extension of Kirchhoff’s Formula to Radiation from Moving Surfaces, Journal of Sound and Vibration, 123 (3), 451–460MathSciNetzbMATHCrossRefGoogle Scholar
- Ffowcs Williams JE, Hawkings DL (1969) Sound Generation by Turbulence and Surfaces in Arbitrary Motion, Philosophical Transactions of the Royal Society, 264(A), 321–342, London, UKzbMATHGoogle Scholar
- Forschungsinstitut für Kraftfahrwesen und Fahrzeugmotoren Stuttgart (FKFS): Homepage „Berechnung Fahrzeugakustik“; Quelle: http://www.fkfs.de/deutsch/kraftfahrwesen/ fahrzeugakustik-und-schwingungen/berechnungsmethoden/ am 15.01.2009 um 16:20 UhrGoogle Scholar
- Gaul L, Fiedler Ch (1997) Methode der Randelemente in Statik und Dynamik. Vieweg, BraunschweigzbMATHCrossRefGoogle Scholar
- Gaul L, Kögl M, Wagner M (2003) Boundary Element Methods for Engineers and Scientists. Springer, Berlin, DeutschlandzbMATHGoogle Scholar
- Genechten B van, Pluymers B (2009) A Hybrid Wave Based – Modally Reduced Finite Element Method for the Efficient Analysis of Low- and Mid-Frequency Car Cavity Acoustics, SAE-International Dokument 2009-01-2214Google Scholar
- Genell A, Västfjäll D (2007) Vibrations Can Have Both Negative and Positive Effects on the Perception of Sound. International Journal of Vehicle Noise and Vibration, 3 (2), 172–184CrossRefGoogle Scholar
- Genuit K (2008) Vehicle Interior Noise. A combination of Sound, Vibration and Interactivity. Noise-Con ’08, Dearborn, Michigan, USAGoogle Scholar
- Genuit K, Poggenburg J (1998) The Influence of Vibrations on the Subjective Judgement of Vehicle’s interior noise. Noise-Con ’98, Ypsilanti, Michigan, USAGoogle Scholar
- Genuit K, Fiebig A (2005) Neue Verfahren zum Benchmarking von Fahrzeuginnengeräuschen. Haus der Technik 2005, EssenGoogle Scholar
- Gérard F, Tournour M, El Masri N, Cremers L, Felice M, Selmane A (2001) Numerical Modeling of Engine Noise Radiation through the use of Acoustic Transfer Vectors – A Case Study. Journal of Sound and Vibration, 57 (4), 473–500Google Scholar
- Glegg SA (1999) Recent Advances in Aeroacoustics: The Influence of Computational Fluid Dynamics, 6th International Congress on Sound and Vibration, Kopenhagen, DänemarkGoogle Scholar
- Goldstein ME (1976) Aeroacoustics, McGraw-Hill Book Company, New YorkzbMATHGoogle Scholar
- Guisset P, Brughmans M (1995) Modal Expansion of Experimental Vibration Data for Acoustic Radiation Prediction, IMAC-13, Nashville, USACrossRefGoogle Scholar
- Gumerov NA, Duraiswami R (2004) Fast Multipol Methods for the Helmholtz Equation in Three Dimensions. Elsevier, Heidelberg, DeutschlandGoogle Scholar
- van Hal B, Vanmaele C, Silar P, Priebsch H-H (2004) Hybrid Finite Element – Wave based Method for Steady-state Acoustic analysis, Proceedings of ISMA, September 2004Google Scholar
- Herpe F van (2001) Numerical Prediction of a Whole Car Vibro-Acoustic Behavior at Low Frequencies, SAE-International Dokument 2001-01-1521Google Scholar
- Heuer R, Irschik H, Ziegler F (1990) A BEM-Formulation of Nonlinear Plate Vibrations, Proceedings of IUTAM/IACM-Symposium on Discretization Methods in Structural Mechanics, Kuhn G et al. (Hrsg.), 341–351, Springer, Berlin, DeutschlandGoogle Scholar
- Howe MS (1975) Contributions to the Theory of Aerodynamic Sound, with Application to Excess Jet Noise and the Theory of the Flute, Journal of Fluid Mechanics, 71, 625–673Google Scholar
- Ihlenburg F (1998) Finite Element Analysis of Acoustic Scattering. Applied Mathematical Sciences, 132, Springer, New York, USACrossRefGoogle Scholar
- Jee S-H, Yi J-Ch, Park J-K (2000) The Comparison of the BEM and FEM Techniques for the Interior Noise Analysis of the Passenger Car, 2nd MSC Worldwide Automotive ConferenceGoogle Scholar
- Kaltenbacher M (2007) Numerical Simulation of Mechatronic Sensors and Actuators. Springer, Berlin, DeutschlandGoogle Scholar
- Kang SW, Lee JM, Kim SH (2000) Structural-Acoustic Coupling Analysis of the Vehicle Passenger Compartment with the Roof, Air-Gap, and Trim Boundary, Journal of Vibration and Acoustics, 122 (3), 196–202CrossRefGoogle Scholar
- Klemenz M, Estorff O von, Heckl M (1995) Schallabstrahlung eines Katalysators mit der BEM und dem Rayleigh-Verfahren, DAGA 95, Saarbrücken, DeutschlandGoogle Scholar
- Kousuke N, Junji Y (2006) Method of Transfer Path Analysis for Vehicle Interior Sound with no Excitation Experiment, FISITA 2006 World Automotive CongressGoogle Scholar
- Kühnel W, Paul M, Schaake N, Schrumpf M (2004) Geräuschreduzierung in Fahrzeug-Klimaanlagen, Automobil-Technische Zeitschrift, 12, 2004Google Scholar
- Lighthill MJ (1951a) On Sound Generated Aerodynamically – I. General theory, Proceedings of the Royal Society, A211, London, UKGoogle Scholar
- Lighthill MJ (1951b) On sound generated aerodynamically – II. Turbulence as a source of sound, Proceedings of the Royal Society, 222, London, UKGoogle Scholar
- Lilley GM (1973) On the Noise from Air Jets, Noise Mechanisms, AGARD CP 131Google Scholar
- Linden PJG van der (1999) Modular Vehicle Noise and Vibration Development SAE-International Dokument 1999-01-1689Google Scholar
- LMS International (2000) SYSNOISE Rev 5.5, User’s Manual. Leuven, BelgienGoogle Scholar
- LMS Numerical Technologies N.V. (2007) SYSNOISE-Manual, Rev. 5.6 F., Leuven, BelgienGoogle Scholar
- Lyon R (1975) Statistical Energy Analysis of Dynamical Systems, MIT Press, Cambridge, Massachusets, USAGoogle Scholar
- Lyon RH, Dejong RG (1998) Theory and Application of Statistical Energy Analysis, 2. Aufl., Buttersworths-Heimann, Boston, USAGoogle Scholar
- Maestrello L (1967) Use of Turbulent Model to Calculate the Vibration and Radiation Responses of a Panel, with Practical Suggestions for Reducing Sound Level, Journal of Sound and Vibration, 5 (3), 13–38CrossRefGoogle Scholar
- Martinus F, Herrin DW, Seybert AF (2003) Practical Considerations in Reconstructing the Surface Vibration using Inverse Numerical Acoustics, SAE Technical Paper 03NVC-113, Warrendale, USAGoogle Scholar
- Mencik J-M, Ichchou MN (2008) A substructuring technique for finite element wave propagation in multi-layered systems, Computer Methods in Applied Mechanics and Engineering, 197 (6–8), 505–523Google Scholar
- Menzel S, Dauenhauer T, Fastl H (2009) Crying Colours and Their Influence on Loudness Judgments. DAGA/NAG ’09, Rotterdam, NiederlandeGoogle Scholar
- Migeot J-L (1998) Méthodes numériques pour la conception vibro-acoustique des structures, Ph.D. Thesis, Université Libre de Bruxelles, BelgienGoogle Scholar
- Mitschke M, Klingner B (1998) Schwingungskomfort im Kraftfahrzeug, Automobiltechnische Zeitschrift, 100, 18–24Google Scholar
- Möhring W (1978) On Vortex Sound at Low Mach Number, Journal of Fluid Mechanics, 85, 685–691Google Scholar
- Nettelbeck C, Riemann D, Sellerbeck P (2004) Road Noise Analysis Using Binaural Time Domain Approach, CFA/DAGA ’04, Straßburg, FrankreichGoogle Scholar
- OBELICS (2002) EU-Forschungsprojekt “Objective Evaluation of Interior Car Sound (Obelics)” Brite EURAM BE-96-3727, 1999–2002Google Scholar
- Ochmann M, Makarov S (1998) Ein iteratives Randelementverfahren zur Berechnung der hochfrequenten Schallstreuung an dreidimensionalen Strukturen. Tagungsband DAGA 98, Zürich, SchweizGoogle Scholar
- Özkan A (2001) Schalldrucksimulation im Fahrgastraum eines Cabrio-Fahrzeugs mit Hilfe der statistischen Energieflussanalyse bei aeroakustischer Anregung, Vortrag im Haus der Technik, EssenGoogle Scholar
- Özkan A (2003) Einsatz der statistischen Energieflussanalyse bei Porsche in der Akustikentwicklung, DAGA 2003, AachenGoogle Scholar
- Özkan A (2007) Statistische Energieflussanalyse: ein Werkzeug zur Akustik Simulation im hochfrequenten Bereich. Workshop „Mess- und Analysetechnik in der Fahrzeugakustik“, Universität Stuttgart, FKFSGoogle Scholar
- Paul S, Schulte-Fortkamp B, Genuit K (2004) Sound Quality and Soundscape: A New Qualitative Approach to Evaluate Target Sounds. Inter-Noise ’04, Prag, Tschechische RepublikGoogle Scholar
- Pierce AD (1981) Acoustics: An Introduction to Its Physical Principles and Applications, McGraw-Hill Book Company, New York, USAGoogle Scholar
- Read A, Mendonca F, Scharm Ch, Tournour M (2005) Optimal Sunroof Buffeting Predictions with Compressibility and Surface Impedance Effects, American Institute of Aeronautics and Astraunotics Paper 2005-2859, 1–13Google Scholar
- Riemann D, Nettelbeck C, Sottek R (2006) Hybrider Ansatz zur interaktiven Auralisierung des Antriebsstrangs mittels gemessener und berechneter Anregungsdaten, DAGA ’06, Braunschweig, DeutschlandGoogle Scholar
- Sato T, Maeda S, Yano T (2006) An Experiment on Whole-Body Vibration Perception Threshold of People Exposed to Noise. Inter-Noise ’06, Proceedings, Honolulu, Hawaii, USAGoogle Scholar
- Seibert W, Ehlen M, Sovani S (2004) Simulation of Transient Aerodyanamics-Predicting Buffting, Roaring and Whistling using CFD, 5th Mira International Vehicle Aerodynamics Conference Heritage Motor Center, Warwick, 13.-14.10.2004Google Scholar
- Senthooran S, Duncan B, Freed D, Hendriana D, Powell R, Nalevanko J (2007) Design of Roof-Rack Crossbars for Production Automobils to Reduce Howl Noise using a Lattice Boltzmann Scheme, SAE-Paper 2007-01-2398Google Scholar
- Senthooran S, Crouse B, Balasubramanian G, Freed D, Shin SR, Ih K-D (2008) Effect of Surface Mounted Microphones on Automobile Side Glass Pressure Fluctuations, Proceedings of 7th MIRA International Vehicle Aerodynamics Conference, Coventry 22.–23.10.2008Google Scholar
- Sköld A, Västfjäll D, Veljanovska I (2005) Vibrational Influence on Product Sound Quality in Cars. Forum Acusticum ’05, Budapest, HungaryGoogle Scholar
- Sottek R, Philippen B (2009) Characterizing Tire and Wind Noise Using Operational Path Analysis. NAG/DAGA ’09, Rotterdam, NiederlandeGoogle Scholar
- Spalart PR, Jou WH, Strelets M, Allmaras SR (1997) Comments on the Feasibility of LES for Wings, and on a Hybrid RANS/LES approach, 1st AFOSR International Conference on DNS/LES, Aug. 4–8, 1997, Ruston, LA. Advances in DNS/LES, In: Liu C, Liu Z (Hrsg.), Greyden Press, Columbus, Ohio, USAGoogle Scholar
- Tournour M, Cremers L, Guisset P, Augusztinovicz F, Márki F (2000) Inverse Numerical Acoustics Based on Acoustic Transfer Vectors. Proceedings of the 7th International Congress on Sound and Vibration, Garmisch-Patenkirchen, 2069–2076Google Scholar
- Tournour M, Brux P, Mas P, Wang X, McCulloch CF, Vignassa P (2003) Inverse Numerical Acoustics of a Truck Engine. SIAM Journal of Numerical Analysis, 63, 706–721Google Scholar
- Ullrich F (2008) New Possibilities for Aeroacoustic Optimization in the Underbody Region of Vehicles, In: Wiedemann J (Hrsg.), Progress in Vehicle Aerodynamics and Thermal Management V. Expert-Verlag, RenningenGoogle Scholar
- Viersbach U, Ford R, Guisset P, Rossion JP, Wynendaele H (1994) Comparing acoustic measurements with combined MSC/Nastran-Sysnoise sound radiation predictions of an engine block, MSC World User’s Conference, Florida, USAGoogle Scholar
- Zaleski O (2009) Verfahren zur Aufwandsreduzierung bei der Berechnung der Schallabstrahlung von Strukturen. Shaker Verlag, AachenGoogle Scholar
- Zaleski O, Cremers L, Estorff O von (2001) Zur Anwendung akustischer Übertragungsfunktionen bei der Berechnung von Schallfeldern mit der Boundary-Elemente-Methode. Tagungsband DAGA 2001, HamburgGoogle Scholar
- Zeichert K (1998) Kombinatorische Wirkungen von Bahnlärm und Bahnerschütterungen durch Eisenbahnverkehr und ihre Wirkungen auf Anwohner. Teil 1: Zum Zusammenwirken von Erschütterungs- und Geräuschbelastung. Zeitschrift für Lärmbekämpfung, 41, 43–51, Springer-VerlagGoogle Scholar