Skip to main content

Supramolecular Chemistry of 4,4′-Bipyridine-N,N′-dioxide in Transition Metal Complexes: A Rich Diversity of Co-ordinate, Hydrogen-Bond and Aromatic Stacking Interactions

  • Chapter
  • First Online:

Part of the book series: Structure and Bonding ((STRUCTURE,volume 132))

Abstract

4,4′-Bipyridine-N,N′-dioxide (L1) has enormous flexibility as a supramolecular linker since it can be involved not only in co-ordinate and hydrogen bonds via its N,N′-dioxide oxygen centres, but the pyridine-N-oxide rings can also form aromatic π–π stacking interactions. Thus, L1 can bridge between, or act as a pendant ligand to metal centres and can support hydrogen-bonds within a lattice in a site remote from the metal centre. Of the structurally characterised transition metal complexes abstracted from the literature for this review, 26 form molecular compounds, 14 form 1D chains, 9 form 2D sheets of either 36, 44 or 63 topology, while 5 form 3D networks with either 41263 (α-Po type) or 48668 topology. To target multidimensional architectures it has been found to be necessary to avoid aqueous solutions and strongly co-ordinating anions, and consequently the synthesis of multidimensional L1-bridged transition metal co-ordination polymers has usually involved reaction of L1 with metal salts of weakly co-ordinating anions in low molecular weight alcohols. Of the 98 distinct molecules of L1 reported for complexes in the literature, 42 are bridging, 36 pendant and 20 are non-co-ordinated hydrogen-bonded molecules. Approximately 75% of the bridging L1 molecules adopt an anti-conformation, while the remainder adopt a syn-conformation. This prevalence of the anti-conformation contrasts markedly with the situation observed for lanthanide compounds, for which approximately 75% adopt a syn-conformation. A number of trends in the co-ordination behaviour of L1 with transition metals can be identified. Co-ordination to metal centres is based on sp 2 hybridised oxygen donors, but the π-interaction between the oxygen p z orbital and the aromatic ring is sufficiently weak that the oxygen lone pairs are normally twisted out of the plane of the pyridine-N-oxide by a steric clash between the metal centre and the α-hydrogen of the pyridine ring. As a result of this steric hindrance, \(<{\rm M} \cdots {\rm O}\hbox{--}{\rm N}\) angles increase with decreasing perpendicular distance of the metal from the plane of the pyridine-N-oxide. Finally, \({\rm M} \cdots {\rm M}\) (M = d-block metal) separations in complexes containing anti- and syn-conformation bridging ligands fall in similar ranges. However, those with syn-conformation ligands show an increase in \({\rm M} \cdots {\rm M}\) separation with increasing \(<{\rm M} \cdots {\rm O} \cdots {\rm O} \cdots {\rm M}\) torsion angle, while those anti-conformation ligands show an increase in \({\rm M} \cdots {\rm M}\) separation with increasing \(<{\rm M} \cdots {\rm O}\hbox{--}{\rm N}\) angle.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

L1 :

4,4′-Bipyridine-N,N′-dioxide

L2 :

2,6-Bis[N-2-pyridylethyl)formimidoyl]phenolate

H4bptc:

3,3′, 4,4′-Biphenyltetracarboxylic acid

Hfac:

Hexafluoroacetylacetonate

References

  1. Hoskins BF, Robson R (1990) J Am Chem Soc 112:1546

    Article  CAS  Google Scholar 

  2. Batten SR, Robson R (1998) Angew Chem Int Ed Engl 37:1460

    Article  Google Scholar 

  3. Blake AJ, Champness NR, Hubberstey P, Li WS, Schröder M, Withersby MW (1999) Coord Chem Rev 183:117

    Article  CAS  Google Scholar 

  4. Moulton B, Zaworotko MJ (2001) Chem Rev 101:1629

    Article  CAS  Google Scholar 

  5. Khlobystov AN, Blake AJ, Champness NR, Lemenovskii DA, Majouga AG, Zyk NV, Schröder M (2001) Coord Chem Rev 222:155–192

    Article  Google Scholar 

  6. Chae HK, Siberio-Pérez DY, Kim J, Go YB, Eddaoudi M, Matzger AJ, O'Keeffe M, Yaghi OM (2004) Nature 427:523

    Article  CAS  Google Scholar 

  7. Lin X, Blake AJ, Wilson C, Sun XZ, Champness, NR, George MW, Hubberstey P, Mokaya R, Schröder M (2006) J Am Chem Soc 128:10745

    Article  CAS  Google Scholar 

  8. Kubota Y, Takata M, Matsuda R, Kitaura R, Kitagawa S, Kobayashi TC (2006) Angew Chem Int Ed 45:4932

    Article  CAS  Google Scholar 

  9. Zeng M-H, Feng X-L, Chen X-M (2004) Dalton Trans, p 2217

    Google Scholar 

  10. Wong-Foy AG, Lebel O, Matzger, AJ (2007) J Am Chem Soc 129:15740

    Article  CAS  Google Scholar 

  11. Ma S, Sun D, Simmons JM, Collier CD, Yuan D, Zhou H-C (2008) J Am Chem Soc 130:1012

    Article  CAS  Google Scholar 

  12. Lin X, Jia J, Hubberstey P, Schröder M, Champness NR (2007) Cryst Eng Commun 9:438

    CAS  Google Scholar 

  13. Dincǎ M, Dailly A, Liu Y, Brown CM, Neumann DA, Long JR (2006) J Am Chem Soc 128:16876

    Article  Google Scholar 

  14. Jia J, Lin X, Wilson C, Blake AJ, Champness NR, Hubberstey P, Walker G, Cussen EJ, Schröder M (2007) Chem Commun, p 840

    Google Scholar 

  15. Chen B, Liang C, Yang J, Contreras DS, Clancy YL, Lobkovsky EB, Yaghi OM, Dai S (2006) Angew Chem Int Ed 45:1390

    Article  CAS  Google Scholar 

  16. Ye Q, Song Y-M, Wang G-X, Chen K, Fu D-W, Chan PWH, Zhu J-S, Huang SD, Xiong R-G (2006) J Am Chem Soc 128:6554

    Article  CAS  Google Scholar 

  17. Bordiga S, Lamberti C, Ricchiardi G, Regli L, Bonino F, Damin A, Lillerud K-P, Bjorgen M, Zecchina A (2004) Chem Commun, p 2300

    Google Scholar 

  18. Zhang L-J, Yu J-H, Xu J-Q, Lu J, Bie H-J, Zhang X (2005) Inorg Chem Commun 8:638

    Article  CAS  Google Scholar 

  19. Khlobystov AN, Brett MT, Blake AJ, Champness NR, Gill PMW, O'Neill DP, Teat SJ, Wilson C, Schröder M (2003) J Am Chem Soc 125:6753

    Article  CAS  Google Scholar 

  20. Biradha K, Sarkar M, Rajput L (2006) Chem Commun, p 4169

    Google Scholar 

  21. Yang W, Lin X, Jia J, Blake AJ, Wilson C, Hubberstey P, Champness NR, Schröder M (2008)Chem Commun, p 359

    Google Scholar 

  22. Yang S, Lin X, Blake AJ, Thomas KM, Hubberstey P, Champness NR, Schröder M (2008)Chem Commun, p 6108

    Google Scholar 

  23. Swiegers GF, Malefetse TJ (2000) Chem Rev 100:3483

    Article  CAS  Google Scholar 

  24. Seidel SR, Stang PJ (2002) Acc Chem Res 35:972

    Article  CAS  Google Scholar 

  25. Blake AJ, Champness NR, Crew M, Hanton LR, Parsons S, Schröder M (1998) J Chem Soc Dalton Trans, p 1533

    Google Scholar 

  26. Blake AJ, Brooks NR, Champness NR, Crew M, Hanton LR, Hubberstey P, Parsons S, Schröder M (1999) J Chem Soc Dalton Trans, p 2813

    Google Scholar 

  27. Withersby MA, Blake AJ, Champness NR, Cooke PA, Hubberstey P, Realf AL, Schröder M (2000) J Chem Soc Dalton Trans, p 3261

    Google Scholar 

  28. Rosi NL, Eddaoudi M, Kim J, O'Keeffe M, Yaghi OM (2002) CrystEngComm 4:401

    Article  CAS  Google Scholar 

  29. Sui B, Fan J, Okamura T, Sun W-Y, Ueyama N (2005) Solid State Chem 7:969

    CAS  Google Scholar 

  30. Hill RJ, Long D-L, Champness NR, Hubberstey P, Schröder M (2005) Acc Chem Res 38:337

    Article  Google Scholar 

  31. Long D-L, Blake AJ, Champness NR, Wilson C, Schröder M (2001) J Am Chem Soc 123:3401

    Article  CAS  Google Scholar 

  32. Long D-L, Blake AJ, Champness NR, Wilson C, Schröder M (2001) Angew Chem Int Ed 40:2444

    CAS  Google Scholar 

  33. Long D-L, Hill RJ, Blake AJ, Champness NR, Hubberstey P, Proserpio DM, Wilson C, Schröder M (2004) Angew Chem Int Ed 43:1851

    Article  CAS  Google Scholar 

  34. Hill RJ, Long D-L, Turvey MS, Blake AJ, Champness NR, Hubberstey P, Wilson C, Schröder M (2004) Chem Commun, p 1792

    Google Scholar 

  35. Long D-L, Blake AJ, Champness NR, Wilson C, Schröder M (2002) Chem Eur J 8:2026

    Article  CAS  Google Scholar 

  36. Roesky HW, Andruh M (2003) Coord Chem Rev 236:91

    Article  CAS  Google Scholar 

  37. Bourne SA, Moitsheki LJ (2005) Cryst Eng Commun 7:674

    CAS  Google Scholar 

  38. Ma B-Q, Sun H-L, Gao S, Xu G-X (2001) Inorg Chem 40:6247

    Article  CAS  Google Scholar 

  39. Blake AJ, Brett MT, Champness NR, Khlobystov AN, Long D-L, Wilson C, Schröder M (2001) Chem Commun, p 2258

    Google Scholar 

  40. Ma B-Q, Gao S, Sun H-L, Xu G-X (2001) Cryst Eng Commun 3:147

    Google Scholar 

  41. Mantero DG, Neels A, Stoeckli-Evans H (2006) Inorg Chem 45:3287

    Article  CAS  Google Scholar 

  42. Nedelcu A, Žak Z, Madalan AM, Pinkas J, Andruh M (2003) Polyhedron 22:789

    Article  CAS  Google Scholar 

  43. Xu Y, Yuan D, Xu Y, Bi W, Zhou Y, Hong M (2004) Acta Crystallogr Sect E 60:m713

    Article  Google Scholar 

  44. Ma B-Q, Sun H-L, Gao S (2005) Inorg Chem 44:837

    Article  CAS  Google Scholar 

  45. Jia J, Blake AJ, Champness NR, Hubberstey P, Wilson C, Schröder M (2008) Inorg Chem 47:8652

    Article  CAS  Google Scholar 

  46. Long D-L, Blake AJ, Champness NR Schröder M (2000) Chem Commun, p 2273

    Google Scholar 

  47. Wang X-L, Qin C, Wang E-B, Xu L (2005) Eur J Inorg Chem 3418

    Google Scholar 

  48. Bourne SA, Moitsheki LJ (2007) J Chem Crystallogr 37:359

    Article  CAS  Google Scholar 

  49. Visinescu D, Pascu GI, Andruh M, Magull J, Roesky HW (2002) Inorg Chim Acta 340:201

    Article  CAS  Google Scholar 

  50. Plater MJ, Foreman MRStJ, Slawin AMZ (2000) Inorg Chim Acta 303:132

    Article  CAS  Google Scholar 

  51. Manna SC, Zangrando E, Drew MGB, Ribas J, Chaudhuri NR (2006) Eur J Inorg Chem 481

    Google Scholar 

  52. Ma B-Q, Gao S, Sun H-L, Xu G-X (2001) J Chem Soc Dalton Trans, p 130

    Google Scholar 

  53. Bruda S, Andruh M, Roesky HW, Journaux Y, Noltmeyer M, Rivière E (2001) Inorg Chem Commun 4:111

    Article  CAS  Google Scholar 

  54. Ang SG, Sun BW (2005) Cryst Growth Design 5:383

    Article  CAS  Google Scholar 

  55. Long D-L, Hill RJ, Blake AJ, Champness NR, Hubberstey P, Wilson C, Schröder M (2005) Chem Eur J 11:1384

    Article  CAS  Google Scholar 

  56. Williams CA, Blake AJ, Hubberstey P, Schröder M (2005) Chem Commun, p 5435

    Google Scholar 

  57. Du M, Jiang X-J, Zhao X-J, (2007) Inorg Chem 46:3984

    Article  CAS  Google Scholar 

  58. Edgar M, Mitchell R, Slawin AMZ, Lightfoot P, Wright PA (2001) Chem Eur J 5168

    Google Scholar 

  59. Burrows AD, Cassar K, Friend RMW, Mahon MF, Rigby SP, Warren JE (2005) Cryst Eng Commun 7:548

    CAS  Google Scholar 

  60. Hawxwell SM, Adams H, Brammer L (2005) Acta Cryst B62:808

    Google Scholar 

  61. Su C-Y, Cai Y-P, Chen C-L, Kang B-S (2001) Inorg Chem 40:2210

    Article  CAS  Google Scholar 

  62. Biradha K, Fujita M (2002) Chem Commun, p 1866

    Google Scholar 

  63. Carlucci L, Ciani G, Proserpio DM (1998) New J Chem 1319

    Google Scholar 

  64. Hagrman P, Hagrman D, Zubieta J (1999) Angew Chem Int Ed 38:2638

    Article  Google Scholar 

  65. Allen FH, (2002) Acta Crystallogr Sect B 58:380

    Article  Google Scholar 

  66. Bondi A (1964) J Phys Chem 68:441

    Article  CAS  Google Scholar 

  67. Emsley J (1991) The elements, 2nd edn. Clarendon Press, Oxford

    Google Scholar 

Download references

Acknowledgements

We thank EPSRC for support. M.S. gratefully acknowledges receipt of a Royal Society Wolfson Merit Award and of a Leverhulme Trust Senior Research Fellowship..

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Schröder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag London

About this chapter

Cite this chapter

Jia, J., Hubberstey, P., Champness, N.R., Schröder, M. (2009). Supramolecular Chemistry of 4,4′-Bipyridine-N,N′-dioxide in Transition Metal Complexes: A Rich Diversity of Co-ordinate, Hydrogen-Bond and Aromatic Stacking Interactions. In: Hosseini, M. (eds) Molecular Networks. Structure and Bonding, vol 132. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01367-6_10

Download citation

Publish with us

Policies and ethics