Skip to main content

Communication Channels

  • Chapter
  • First Online:
Book cover Digital Transmission

Part of the book series: Signals and Communication Technology ((SCT))

  • 1658 Accesses

Abstract

When a communication system has to be designed, the first main questions that must be answered are: (1) what is the channel through which the transmitted signal will flow? (2) how this channel can be mathematically modeled? In this chapter we address the main characteristics of some communication channels and their mathematical models. When dealing with models, we put emphasis on the fundamentals on some general classes of physical channels, not on the details of specific reference models typically available in recommendations and standards. With these fundamentals, the reader will be able to understand specific models and their simulation aspects, so that these concepts can be used in the research, design and performance assessment of a communication system. A vast number of references are inserted throughout the text to help the readers find additional information or even for a deeper or more complete treatment on some specific channel.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akbar, I. A. Markov Modeling of Third Generation Wireless Channels. M.Sc. Dissertation. Virginia Polytechnic Institute and State University. Blacksburg, Virginia, March 2003.

    Google Scholar 

  2. Almers, P. et al. Survey of Channel and Radio Propagation Models for Wireless MIMO Systems. EURASIP Journal on Wireless Communications and Networking. 19070, 2007.

    Google Scholar 

  3. Anastasiadou, D. and Antonakopolous, Multipath Characterization of Indoor Power Line Networks, IEEE Transactions on Power Delivery, vol. 20, No. 1, pp. 90–99, January 2005.

    Article  Google Scholar 

  4. Andersen, J. B., Rappaport, T. S. and Yoshida, S. Propagation Measurements and Models for Wireless Communications Channels, IEEE Communications Magazine. vol. 33, pp. 42–49, January 1995.

    Article  Google Scholar 

  5. Asadi, M. M., Duffy, A. P., Hodge, K. G. and Willis, A. J. Twisted Pair Cable Design Analysis and Simulation. IWCS-49, Atlantic City, NJ, USA, pp. 111–120, November 13–16, 2000.

    Google Scholar 

  6. Bello, P. A. Characterization of Randomly Time-Variant Linear Channels. IEEE Transactions on Communications Systems, vol. CS-11, pp. 360–393, December 1963.

    Article  Google Scholar 

  7. Bello, P. A. Aeronautical Channel Characterization. IEEE Transactions on Communications, vol. COM-21, pp. 548–563, May 1973.

    Article  Google Scholar 

  8. Benedetto, S. and Biglieri, E. Principles of Digital Transmission with Wireless Applications. New York, USA: Kluwer Academic and Plenum Publishers, 1999.

    Google Scholar 

  9. Benyoucef, D. A New Statistical Model of the Noise Power Density Spectrum for Powerline Communications. In ISPLC’03, Kyoto, Japan, pp. 136–141, March 26–28, 2003.

    Google Scholar 

  10. Born, M. and Wolf, E. Principles of Optics – Electromagnetic Theory of Propagation, Interference and Diffraction of Light. 7th Ed. Cambridge, UK: Cambridge University Press, 1999.

    Google Scholar 

  11. Bullington, K. Radio Propagation Fundamentals. The Bell System Technical Journal, vol. XXXVI, No. 3, pp. 593–626, May 1957.

    Google Scholar 

  12. Cassioli, D.,Win, M. Z. and Molisch, A. F. The Ultra-Wide Bandwidth Indoor Channel: From Statistical Model to Simulations. IEEE Journal Selected Areas in Communications, vol. 20, pp. 1247–1257, August 2002.

    Article  Google Scholar 

  13. Collin, R. E. Foundations for Microwave Engineering. 2nd Ed. New York, USA: IEEE Press, Jon Wiley and Sons, Inc., 2001.

    Google Scholar 

  14. Correia, L. M. (Ed.). Wireless Flexible Personalised Communications COST 259. European Co-operation in Mobile Radio Research. New York, USA: John Wiley and Sons, Inc., 2001.

    Google Scholar 

  15. Cost 231 – Final Report. Digital Mobile Radio Towards Future Generation Systems. Brussels, Belgium, 1997.

    Google Scholar 

  16. Cost 235 – Final Report. Radiowave Propagation Effects on Next-Generation Fixed-Services Terrestrial Telecommunications Systems. Brussels, Belgium, 1996.

    Google Scholar 

  17. Couch, L.W. Digital and Analog Communication Systems, 7th Ed. Upper Saddle River, NJ, USA: Prentice Hall, Inc., 2007.

    Google Scholar 

  18. Crane, R. K. Propagation Handbook for Wireless Communication System Design. Boca Raton, FL, USA: CRC Press LLC, 2003.

    Google Scholar 

  19. Dostert, K. Power Line Communications. Communication Engineering and Emerging Technologies. New York, USA: Prentice Hall, Inc., 2001.

    Google Scholar 

  20. Duff, D. G. Computer-Aided Design of Digital Lightwave Systems, IEEE Journal Selected Areas in Communications, SAC-2 (1), pp. 171–185, 1984.

    Article  Google Scholar 

  21. Durgin, G. D., Space-Time Wireless Channels, Upper Saddle River, NJ, USA: Prentice Hall, Inc., 2003.

    Google Scholar 

  22. Ebert, J. P. and Willig, A. A Gilbert-Elliott Bit Error Model and the Efficient Use in Packet Level Simulation. TKN Technical Report TKN-99-002, TU Berlin, March 1999.

    Google Scholar 

  23. Elliott, E. O. Estimates of error rates for codes on burst-noise channels. Bell-System, Technology Journal, vol. 42, pp. 1977–1997, September 1963.

    Google Scholar 

  24. Ertel, R. B. et al. Overview of Spatial Channel Models for Antenna Array Communication Systems. IEEE Personal Communications, vol. 5, pp. 10–22, February 1998.

    Article  Google Scholar 

  25. Esmailian, T., Kschischang, F. R. and Gulak, P. G. In-Building Power Lines as High-Speed Communication Channels: Channel Characterization and a Test Channel Ensemble. International Journal of Communication Systems pp. 381–400, May 2003.

    Google Scholar 

  26. Fritchman, B. D. A Binary Channel Characterization Using Partitioned Markov-Chains, IEEE Trans. Inform. Theory, vol. 13, pp. 221–227, April 1967.

    Article  MATH  Google Scholar 

  27. Gilbert, E. N. Capacity of a Burst-Noise Channel. Bell Systems, Technology Journal, vol. 39, pp. 1253–1266, September 1960.

    Google Scholar 

  28. Goldsmith, A. Wireless Communications. New York, USA: Cambridge University Press, 2005.

    Google Scholar 

  29. Rapp, M. and Dostert, K. Power Line Channel Characteristics and Their Effect on Communication System Design. IEEE Communications Magazine, Vol. 42, pp. 78–86, April 2004.

    Google Scholar 

  30. Graf, R. F. Modern Dictionary of Electronics, 7th Ed, USA: Newnes & Butterworth-Heineman, 1999.

    Google Scholar 

  31. Hashemi, H. The Indoor Radio Propagation Channel. Proceedings of the IEEE, Vol. 81, No. 7, pp. 943–968, July 1993.

    Article  Google Scholar 

  32. Hashemi, H. Impulse Response Modeling of Indoor Radio Propagation Channels. IEEE Journal Selected Areas in Communications, vol. 11, pp. 967–978, September 1993.

    Article  Google Scholar 

  33. Haykin, S. Communication Systems, 3rd Ed. New York, USA: John Wiley and Sons, Inc., 1994.

    Google Scholar 

  34. Hoffmeyer, J. A. Measurement, Modeling, and Simulation of Digital LOS Microwave Channels with Applications to Outage Prediction. IEEE Trans. Communications, vol. COM-39, pp. 1295–1305, September 1991.

    Article  Google Scholar 

  35. Hranilovic, S. Wireless Optical Communication Systems. Boston, USA: Springer Science and Business Media, Inc., 2005.

    Google Scholar 

  36. Hrasnica, H., Haidine, A. and Lehnert, R. Broadband Powerline Communications Network Design. Chichester, England: John Wiley & Sons Ltd., 2004.

    Book  Google Scholar 

  37. IEEE VT-S Propagation Committee. Wireless Planning Tools for Mobility and Indoor Systems. Available in: http://members.shaw.ca/propagation/ (last access on May 2009).

  38. Ilcev, S. D. Global Mobile Satellite Communications for Maritime, Land and Aeronautical Applications. Dordrecht, The Netherlands: Springer, 2005.

    Google Scholar 

  39. Iskander, M. F. and YUN, Z. Propagation Prediction Models for Wireless Communication Systems. IEEE Transactions on Microwave Theory and Techniques, vol. 50, No. 3, pp. 662–673, March 2002.

    Article  Google Scholar 

  40. ITU-R Rec. PN. 310-9. Definitions of Terms Relating to Propagation in Non-Ionized Media. ITU Radiocommunication Assembly: Geneva, 1994.

    Google Scholar 

  41. ITU-R Rec. P. 1411-3. Propagation Data and Prediction Methods for the Planning of Short-range Out-door Radiocommunication Systems and Radio Local Area Networks in the Frequency Range 300 MHz to 100 GHz. ITU Radiocommunication Assembly: Geneva, 2005.

    Google Scholar 

  42. Jakes, W. C. (Ed.) Microwave Mobile Communications. New York, USA: IEEE Press, 1994.

    Google Scholar 

  43. Janssen, G. J. M., Stigter, P. A. and Prasad, R. Wideband Indoor Channel Measurements and BER Analysis of Frequency Selective Multipath Channels at 2.4, 4.75, and 11.5 GHz. IEEE Transactions on Communications, vol. COM-44, pp. 1272–1288, October 1996.

    Google Scholar 

  44. Jeruchim, M. C., Balaban, P. and Shanmugan, K. S. Simulation of Communication Systems – Modeling, Methodology, and Techniques. 2nd Ed. New York, USA: Kluwer Academic & Plenum Publishers, 2000.

    Google Scholar 

  45. Killinger, D. Optical Wireless Laser Communications: Free-Space Optics. In: Wiley Encyclopedia of Telecommunications (J. G. Proakis, Ed.), vol. 4. Hoboken, New Jersey, USA: John Wiley & Sons, Inc., pp. 1849–1867, 2003.

    Google Scholar 

  46. Kitao, K. and Ichitsubo, S. Path Loss Prediction Formula in Urban Area for the Fourth-Generation Mobile Communication Systems. IEICE Transactions on Communications, vol. E91–B, No. 6, pp. 1999–2009, June 2008.

    Article  Google Scholar 

  47. Landstorfer, F., Woelfle, G. and Hoppe, R. Propagation Models for Indoor Communications. In: Wiley Encyclopedia of Telecommunications (J. G. Proakis, Ed.), vol. 4. Hoboken, New Jersey, USA: John Wiley & Sons, Inc., pp. 2012–2021, 2003.

    Google Scholar 

  48. Laplante, P. A. (Ed.). Electrical Engineering Dictionary. Boca Raton, USA: CRC Press LLC, 2000.

    Google Scholar 

  49. Lathi, B. P. An Introduction to Random Signals and Communication Theory. USA: International Textbook Company, 1968.

    Google Scholar 

  50. Lathi, B. P. Modern Digital and Analog Communication Systems. 3rd Ed. New York, USA: Oxford University Press, 1998.

    Google Scholar 

  51. Lee, W. C. Y. Mobile Communications Engineering – Theory and Applications, 2nd Ed. New York, USA: McGraw-Hill, Inc., 1998.

    Google Scholar 

  52. Leon–Garcia, A. Probability, Statistics, and Random Processes for Electrical Engineering. 3rd Ed. Upper Saddle River, NJ, USA: Prentice Hall, 2008.

    Google Scholar 

  53. Li, L., Vurany, M. C. and Akyildiz, I. F. Characteristics of Underground Channel for Wireless Underground Sensor Networks. The Sixth Annual Mediterranean Ad-Hoc Networking Workshop. Corfu, Greece, June 12–15, 2007.

    Google Scholar 

  54. Liu. E. et al, Broadband Characterization of Indoor Power Line Channel. In: ISPLC’04. Zaragoza, Spain. pp. 22–26, April 2004.

    Google Scholar 

  55. Matijn, E. (Ed.) State of the Art Channel Models. Report BTS01063 – Deliverable D2.1. Broadband Radio@Hand. TU Eindihoven. 2002.

    Google Scholar 

  56. Muhammad, S. S., Kohldorfer, P., and Leitgeb, E. Channel Modeling for Terrestrial Free Space Optical Links. In: Proceedings of 7th International Conference on Transparent Optical Networks, pp. 407–410, July 2005.

    Google Scholar 

  57. Narasimhan, R. and Cox, D. C. A Generalized Doppler Power Spectrum for Wireless Environments. IEEE Communications Letters, vol. 3, pp. 164–165, June 1999.

    Article  Google Scholar 

  58. Neskovic, A., Neskovic, N. and Paunovic, G. Modern Approaches in Modeling of Mobile Radio Systems Propagation Environment. IEEE Communications Surveys, vol. 3, pp. 2–12, 2000.

    Article  Google Scholar 

  59. Paulraj, A. and Papadias, C. Space-Time Processing for Wireless Communications. IEEE Signal Processing Magazine, pp. 49–83, November 1997.

    Google Scholar 

  60. Paulraj, A., Rohit N. and Dhananjay G., Introduction to Space-Time Wireless Communications, Cambridge, UK: Cambridge University Press, 2003.

    Google Scholar 

  61. Pavlidou, N. Vinck, A. J. H. Yazdani, J. and Honary, B. Power Line Communications: State of the Art and Future Trends. IEEE Communications Magazine, vol. 41, pp. 34–40, April 2003.

    Article  Google Scholar 

  62. Philipps, H. Modelling of Powerline Communications Channels. In ISPLC’99, Lancaster, UK, pp. 14–21, March 1999.

    Google Scholar 

  63. Poor, H. V. and Wornell, G. W. (Ed.). Wireless Communications – Signal Processing Perspectives. Upper Saddle River, New Jersey, USA: Prentice-Hall, 1998.

    Google Scholar 

  64. Proakis, J. G. and Salehi, M. Communication Systems Engineering. 2nd Ed. Upper Saddle River, New Jersey, USA: Prentice Hall, 2002.

    Google Scholar 

  65. Proakis, J. G. Digital Communications. 3rd Ed. USA: McGraw Hill, Inc., 1995.

    Google Scholar 

  66. Proakis, J. G. (Ed.). Wiley Encyclopedia of Telecommunications, vols. 1–5. Hoboken, New Jersey, USA: John Wiley & Sons, Inc., 2003.

    Google Scholar 

  67. Pursley, M. B. Introduction to Digital Communications. Upper Saddle River, New Jersey, USA: Prentice-Hall, 2005.

    Google Scholar 

  68. Quazi, A. H. and Konrad, W. L. Underwater acoustic communications. IEEE Communications Magazine, vol. 20, pp. 24 – 30, March 1982.

    Article  Google Scholar 

  69. Rappaport, T. S. Wireless Communications, 2nd Ed. Upper Saddle River, New Jersey, USA: Prentice-Hall, Inc., 2002.

    Google Scholar 

  70. Rossi, J. P. and Y. Gabillet, Y. A Mixed Ray Launching/Tracing Method for Full 3-D UHF Propagation Modeling and Comparison with Wide-Band Measurements. IEEE Transactions on Antennas and Propogation, vol. 50, No. 4, pp. 517–523, April 2002.

    Article  Google Scholar 

  71. Rouseff D. et al. Underwater Acoustic Communication by Passive-Phase Conjugation: Theory and Experimental Results. IEEE Journal of Oceanic Engineering, vol. 26, No. 4, pp. 821–831, 2001.

    Article  Google Scholar 

  72. Rubio, L. M. et al. Channel Modeling and Characterization at 17 GHz for Indoor Broadband WLAN. IEEE Journal Selected Areas in Communications, vol. 20, No. 3, pp. 593–601, April 2002.

    Article  Google Scholar 

  73. Rummler, W. D. More on the Multipath Fading Channel Model. IEEE Transactions on Communications, vol. COM-29, pp. 346–352, March 1981.

    Article  Google Scholar 

  74. Rummler, W. D. A Simplified Method for the Laboratory Determination of Multipath Outage of Digital Radios in the Presence of Thermal Noise. IEEE Transactions on Communications, vol. COM-30, pp. 487–494, March 1982.

    Article  Google Scholar 

  75. Rummler, W. D., R. P. Coutts, R. P. and M. Liniger, M. Multipath Fading Channel Models for Microwave Digital Radio. IEEE Communications Magazine, vol. 24, pp. 30–42, November 1986.

    Article  Google Scholar 

  76. Saleh, A. A. M. and Valenzuela, R. A Statistical Model for Indoor Multipath Propagation, IEEE Journal Selected Areas in Communications, Vol. SAC-5, No. 2, pp. 128–137, February 1987.

    Article  Google Scholar 

  77. Sarkar, T. K. et al., A Survey of Various Propagation Models for Mobile Communication, IEEE Antennas and Propagation Magazine, Volume 45, Issue 3, pp. 51–82, June 2003.

    Article  Google Scholar 

  78. Serizawa, Y. and Takeshita, S. A Simplified Method for Prediction of Multipath Fading Outage of Digital Radio. IEEE Transactions on Communications, vol. COM-31, pp. 1017–1021, August 1983.

    Article  Google Scholar 

  79. Shah, A. R., Hsu, R. C. J. and Tarighat, A. Coherent Optical MIMO (COMIMO). Journal of Lightwave Technology, vol. 23, No. 8, pp. 2410–2418, August 2005.

    Article  Google Scholar 

  80. Siwiak, K. Radiowave Propagation and Antennas for Personal Communications. Norwood, MA, USA: Artech House, Inc. 1995.

    Google Scholar 

  81. Sklar, B. Digital Communications – Fundamentals and Applications. New Jersey, USA: Prentice Hall, Inc., 1988.

    Google Scholar 

  82. Smith, D. R. Terrestrial Microwave Communications. In: Wiley Encyclopedia of Telecommunications (J. G. Proakis, Ed.), vol. 5. Hoboken, New Jersey, USA: John Wiley & Sons, Inc., pp. 2555–2572, 2003.

    Google Scholar 

  83. Spencer, Q. H., Jeffs, B. D., Jensen, M. A. and Swindlehurst, A. L. Modeling the Statistical Time and Angle of Arrival Characteristics of an Indoor Multipath Channel. IEEE Journal Selected Areas in Communications, vol. 18, pp. 347–360, March 2000.

    Article  Google Scholar 

  84. Stuber, G. L. Principles of Mobile Communications. 2nd Ed. New York, USA: Kluwer Academic Publishers, 2001.

    Google Scholar 

  85. Tarighat, A. et al. Fundamentals and Challenges of Optical Multiple-Input Multiple-Output Multimode Fiber Links. IEEE Communications Magazine. May 2007.

    Google Scholar 

  86. Tranter, W. H., Shanmugan, K. S., Rappaport, T. S. and Kosbar, K. L. Principles of Communication Systems Simulation with Wireless Applications. Upper Saddle River, New Jersey, USA: Prentice-Hall, 2004.

    Google Scholar 

  87. Valenzuela, R.A. Ray Tracing Prediction of Indoor Radio Propagation. In: Proceedings of PIMRC ’94, pp. 140–143, The Hague, The Netherlands, 1994.

    Google Scholar 

  88. Wang, H. S. and Moayeri, N. Finite-State Markov Channel – A Useful Model for Radio Communication Channels. IEEE Transactions on Vehicular Technology, pp. 163–171, February 1995.

    Google Scholar 

  89. Weisstein, E. Wolfram MathWorld. Available at: http://mathworld.wolfram.com (last access on May 2009).

  90. Whitteker, J. H. Physical Optics and Field-Strength Predictions for Wireless Systems. IEEE Journal Selected Areas in Communications, vol. 20, No. 3, pp. 515–522, April 2002.

    Article  Google Scholar 

  91. Wikipedia – The Free Encyclopedia on line. Available at: http://en.wikipedia.org (last access on May 2009).

  92. Yacoub, M. D. Foundations of Mobile Radio Engineering. New York, USA: CRC Press, 1993.

    Google Scholar 

  93. Zimmermann, M. and Dostert, K. An Analysis of the Broadband Noise Scenario in Powerline Networks. In ISPLC’00, Limerick, Ireland, April 5–7, pp. 131–138, 2000.

    Google Scholar 

  94. Zimmermann, M. and Dostert, K. Analysis and Modeling of Impulsive Noise in Broad-Band Powerline Communications. IEEE Transactions on Electromagnetic Compatibility, vol. 44, No. 1, pp. 249–258, February 2002.

    Article  Google Scholar 

  95. Zimmermann, M. and Dostert, K. A Multipath Model for the Powerline Channel. IEEE Transactions on Communications, vol. 50, pp. 553–559, April 2002.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayan Adionel Guimarães .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guimarães, D.A. (2010). Communication Channels. In: Digital Transmission. Signals and Communication Technology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01359-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01359-1_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01358-4

  • Online ISBN: 978-3-642-01359-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics