Skip to main content

Approximate Spectral Clustering

  • Conference paper
Advances in Knowledge Discovery and Data Mining (PAKDD 2009)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 5476))

Included in the following conference series:

Abstract

While spectral clustering has recently shown great promise, computational cost makes it infeasible for use with large data sets. To address this computational challenge, this paper considers the problem of approximate spectral clustering, which enables both the feasibility (of approximately clustering in very large and unloadable data sets) and acceleration (of clustering in loadable data sets), while maintaining acceptable accuracy. We examine and propose several schemes for approximate spectral grouping, and make an empirical comparison of those schemes in combination with several sampling strategies. Experimental results on several synthetic and real-world data sets show that approximate spectral clustering can achieve both the goals of feasibility and acceleration.

This work was supported by ARC Discovery Project DP0663196.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Xu, R., Wunsch II, D.: Survey of clustering algorithms. IEEE Trans. Neural Networks 16(3), 645–678 (2005)

    Article  Google Scholar 

  2. Luxburg, U.: A tutorial on spectral clustering. Technical report, Max Planck Institute for Biological Cybernetics, Germany (2006)

    Google Scholar 

  3. Fowlkes, C., Belongie, S., Chung, F., Malik, J.: Spectral grouping using the Nystr\(\ddot{\mathrm{o}}\)m method. IEEE Trans. Pattern Analysis and Machine Intelligence 26(2), 214–225 (2004)

    Article  Google Scholar 

  4. Ning, H., Xu, W., Chi, Y., Gong, Y., Huang, T.: Incremental spectral clustering with application to monitoring of evolving blog communities. In: SIAM Conference on Data Mining (2007)

    Google Scholar 

  5. Miao, G., Song, Y., Zhang, D., Bai, H.: Parallel spectral clustering algorithm for large-scale community data mining. In: International Conference on WWW (2008)

    Google Scholar 

  6. Shi, J., Malik, J.: Normalized cuts and image segmentation. IEEE Trans. Pattern Analysis and Machine Intelligence 22(8), 888–905 (2000)

    Article  Google Scholar 

  7. Ding, C., He, X., Zha, H., Gu, M., Simon, H.: A min-max cut algorithm for graph partitioning and data clustering. In: International Conference on Data Mining, pp. 107–114 (2001)

    Google Scholar 

  8. Chung, F.: Spectral Graph Theory. American Mathematical Society (1997)

    Google Scholar 

  9. Ng, A., Jordan, M., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems (2001)

    Google Scholar 

  10. Williams, C., Seeger, M.: Using the Nystr\(\ddot{\mathrm{o}}\)m method to speed up kernel machines. In: Advances in Neural Information Processing Systems, pp. 682–688 (2000)

    Google Scholar 

  11. Zhang, K., Tsang, I.W., Kwok, J.T.: Improved Nystr\(\ddot{\mathrm{o}}\)m low-rank approximation and error analysis. In: International Conference on Machine Learning (2008)

    Google Scholar 

  12. Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and projective clustering via volume sampling. In: Symposium on Discrete Algorithms (2006)

    Google Scholar 

  13. Drineas, P., Kannan, R., Mahoney, M.: Fast Monte Carlo algorithms for matrices II: computing a low-rank approximation to a matrix. SIAM Journal on Computing 36(1), 158–183 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Talwalkar, A., Kumar, S., Rowley, H.: Large-scale manifold learning. In: International Conference on Computer Vision and Pattern Recognition (2008)

    Google Scholar 

  15. Pavan, M., Pelillo, M.: Efficient out-of-sample extension of dominant-set clusters. In: Advances in Neural Information Processing Systems (2004)

    Google Scholar 

  16. Bezdek, J., Hathaway, R., Huband, J., Leckie, C., Kotagiri, R.: Approximate clustering in very large relational data. International Journal of Intelligent Systems 21(8), 817–841 (2006)

    Article  MATH  Google Scholar 

  17. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems (2003)

    Google Scholar 

  18. Wang, L., Bezdek, J.C., Leckie, C., Kotagiri, R.: Selective sampling for approximate clustering of very large data sets. International Journal of Intelligence Systems 23(3), 313–331 (2008)

    Article  MATH  Google Scholar 

  19. Cai, D., He, X., Han, J.: Document clustering using locality preserving indexing. IEEE Trans. Knowledge and Data Engineering 17(2), 1637–1642 (2005)

    Google Scholar 

  20. Lovasz, L., Plummer, M.: Matching Theory. Akademiai Kiado. North Holland, Budapest (1986)

    MATH  Google Scholar 

  21. Georghiades, A., Belhumeur, P., Kriegman, D.: From few to many: illumination cone models for face recognition under variable lighting and pose. IEEE Trans. Pattern Analysis and Machine Intelligence 23(6), 643–660 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Wang, L., Leckie, C., Ramamohanarao, K., Bezdek, J. (2009). Approximate Spectral Clustering. In: Theeramunkong, T., Kijsirikul, B., Cercone, N., Ho, TB. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2009. Lecture Notes in Computer Science(), vol 5476. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01307-2_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01307-2_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01306-5

  • Online ISBN: 978-3-642-01307-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics