Skip to main content

Dynamical Optimization and Synchronization in Adaptive Complex Networks

  • Chapter
  • First Online:
Adaptive Networks

Part of the book series: Understanding Complex Systems ((UCS))

  • 3002 Accesses

Abstract

We introduce two dynamical optimization coupling mechanisms for achieving different kinds of synchronization in adaptive complex networks. At each node in the network there is an oscillator, and the ensemble of oscillators can be either identical or non-identical. For each oscillator, we adjust only one incoming link’s strength in each time interval while the other incoming links’ strengths remain constant. The dynamical optimization coupling mechanisms are in effect “winner-take-all” strategies. If one incoming link for each oscillator has the maximal competitive ability in different time intervals, its strength increases by a small value. This way, we realize different kinds of synchronization in adaptive complex networks with instantaneous or delayed couplings, as well as ensure that all oscillators have uniform intensities during the transition to synchronization. We also enhance the synchronizability in complex networks with identical oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small world’ networks. Nature (London) 393, 440–442 (1998).

    Article  Google Scholar 

  2. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Article  MathSciNet  Google Scholar 

  3. Strogatz, S.H.: Exploring complex networks. Nature (London) 410, 268–276 (2001).

    Article  Google Scholar 

  4. Albert, R., Barabasi, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002).

    Article  MathSciNet  Google Scholar 

  5. Boccaletti, S., Latorab, V., Morenod, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424, 175–308 (2006).

    Article  MathSciNet  Google Scholar 

  6. Osipov, G., Kurths, J., Zhou, C.S.: Synchronization in Oscillatory Networks. Springer-Verlag, Heidelberg (2007).

    MATH  Google Scholar 

  7. Strogatz, S.H.: From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000).

    Article  MATH  MathSciNet  Google Scholar 

  8. Pecora, L.M., Carroll, T.L.: Master stability functions for synchronized coupled systems. Phys. Rev. Lett. 80, 2109–2112 (1998).

    Article  Google Scholar 

  9. Barahona, M., Pecora, L.M.: Synchronization in small-world systems. Phys. Rev. Lett. 89, 054101 (2002).

    Article  Google Scholar 

  10. Nishikawa, T., Motter, A.E., Lai, Y.C., Hoppensteadt, F.C.: Heterogeneity in oscillator networks: are smaller worlds easier to synchronize? Phys. Rev. Lett. 91, 014101 (2003).

    Article  Google Scholar 

  11. Wang, X., Lai, Y.C., Lai, C.H.: Enhancing synchronization based on complex gradient networks. Phys. Rev. E 75, 056205 (2007).

    Article  Google Scholar 

  12. Moreno, Y., Pacheco, A.F.: Synchronization of Kuramoto oscillators in scale-free networks. Europhys. Lett. 68, 603–609 (2004).

    Article  Google Scholar 

  13. Arenas, A., Díaz-Guilera, A., Pérez-Vicente, J.C.: Synchronization reveals topological scales in complex networks. Phys. Rev. Lett. 96, 114102 (2006).

    Article  Google Scholar 

  14. Gómez-Gardenes, J., Moreno, Y., Arenas, A.: Paths to synchronization on complex networks. Phys. Rev. Lett. 98, 034101 (2007).

    Article  Google Scholar 

  15. Zhou, C., Motter, A.E., Kurths, J.: Universality in the synchronization of weighted random networks. Phys. Rev. Lett. 96, 034101 (2006).

    Article  Google Scholar 

  16. Huang, D., Chavez, M., Amann, A., Boccaletti1, S.: Synchronization in complex networks with age ordering. Phys. Rev. Lett. 94, 138701 (2005).

    Google Scholar 

  17. Radicchi, F., Meyer-Ortmanns, H.: Reentrant synchronization and pattern formation in pacemaker-entrained Kuramoto oscillators. Phys. Rev. E 74, 026203 (2006).

    Article  MathSciNet  Google Scholar 

  18. Chavez, M., Hwang, D.U., Amann, A., Hentschel, H.G.E., Boccaletti, S.: Synchronization is enhanced in weighted complex networks. Phys. Rev. Lett. 94, 218701 (2005).

    Article  Google Scholar 

  19. Chavez, M., Hwang, D.U., Amann, A., Boccaletti, S.: Synchronizing weighted complex networks. Chaos 16, 015106 (2006).

    Article  MathSciNet  Google Scholar 

  20. Motter, A.E., Zhou, C.S., Kurths, J.: Network synchronization, diffusion, and the paradox of heterogeneity. Phys. Rev. E 71, 016116 (2005).

    Article  Google Scholar 

  21. Nishikawa, T., Motter, A.E.: Synchronization is optimal in nondiagonalizable networks. Phys. Rev. E 73, 065106 (2006).

    Article  Google Scholar 

  22. Jain, S., Krishna, S.: A model for the emergence of cooperation, interdependence, and structure in evolving networks. Proc. Natl. Acad. Sci. U.S.A. 98, 543–547 (2001).

    Article  Google Scholar 

  23. Skyrms, B., Pemantle, R.: A dynamic model of social network formation. Proc. Natl. Acad. Sci. U.S.A. 97, 9340–9346 (2000).

    Article  MATH  Google Scholar 

  24. Zimmermann, M.G., Eguíluz, V.M., Miguel, M.S.: Coevolution of dynamical states and interactions in dynamic networks. Phys. Rev. E 69, 065102 (2004).

    Article  Google Scholar 

  25. Ito, J., Kaneko, K.: Spontaneous structure formation in a network of chaotic units with variable connection strengths. Phys. Rev. Lett. 88, 028701 (2002).

    Article  Google Scholar 

  26. Gleiser, P.M., Zanette, D.H.: Synchronization and structure in an adaptive oscillator network. Eur. Phys. J. B 53, 233–238 (2006).

    Article  Google Scholar 

  27. Gross, T., Blasius, B.: Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5, 259–271 (2008).

    Article  Google Scholar 

  28. Ren, Q., Zhao, J.: Adaptive coupling and enhanced synchronization in coupled phase oscillators. Phys. Rev. E 76, 016207 (2007).

    Article  MathSciNet  Google Scholar 

  29. Chen, M., Shang, Y., Zou, Y., Kurths, J.: Synchronization in the Kuramoto model: a dynamical gradient network approach. Phys. Rev. E. 77, 027101 (2008).

    Article  Google Scholar 

  30. Zhou, C., Kurths, J.: Dynamical weights and enhanced synchronization in adaptive complex networks. Phys. Rev. Lett. 96, 164102 (2006).

    Article  Google Scholar 

  31. Lu, W.L.: Adaptive dynamical networks via neighborhood information: synchronization and pinning control. Chaos 17, 023122 (2007).

    Article  MathSciNet  Google Scholar 

  32. Huang, D.B.: Synchronization in adaptive weighted networks. Phys. Rev. E 74, 046208, (2006).

    Article  MathSciNet  Google Scholar 

  33. Sorrentino, F., Ott, E.: Adaptive synchronization of dynamics on evolving complex networks. arXiv:0802.1241v1 [cond-mat.dis-nn] 10 Feb 2008.

    Google Scholar 

  34. Frasca, M., Buscarino, A., Rizzo, A., Fortuna, L., Boccaletti, S.: Synchronization of moving chaotic agents. Phys. Rev. Lett. 100, 044102 (2008)

    Article  Google Scholar 

  35. Chen, M., Shang, Y., Zhou, C.S.,Wu, Y., Kurths, J.: Enhanced synchronizability in scale-free networks. Chaos 19, 013105 (2009)

    Google Scholar 

  36. Wu, Y., Shang, Y., Chen, M., Zhou, C.S., kurths, J.: synchronization in small-worked networks. Chaos 18, 037111 (2008).

    Google Scholar 

  37. Kozma, B., Barrat, A.: Consensus formation on adaptive networks. arXiv:0707.4416v1 [physics.soc-ph] 30 Jul 2007.

    Google Scholar 

  38. Gross, T., Dommar D’Lima, C., Blasius, B.: Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96, 208701 (2006).

    Article  Google Scholar 

  39. Shaw, L.B., Schwartz, I.B.: Fluctuating epidemics on adaptive networks. Phys. Rev. E 77, 066101 (2008).

    Article  MathSciNet  Google Scholar 

  40. Kuramoto, Y.: Chemical Oscillations, Waves, and Turbulence. Springer, Berlin (1984).

    MATH  Google Scholar 

  41. Acebron, J., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: a simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77, 137–185 (2005).

    Article  Google Scholar 

  42. Maistrenko, Y.L., Lysyansky, B., Hauptmann, C., Burylko, O., Tass, P.A.: Multistability in the Kuramoto model with synaptic plasticity. Phys. Rev. E 75, 066207 (2007).

    Article  MathSciNet  Google Scholar 

  43. Park, K., Lai, Y.C., Zhao, L., Ye, N.: Jamming in complex gradient networks. Phys. Rev. E 71, 065105(R) (2005).

    Google Scholar 

  44. Toroczkai, Z., Bassler, K.E.: Jamming is limited in scale-free systems. Nature 428, 716–716 (2004).

    Article  Google Scholar 

  45. Newman, M.E.J., Watts, D.J.: Renormalization group analysis of the small-world network model. Phys. Lett. A 263, 341–346 (1999).

    Article  MATH  MathSciNet  Google Scholar 

  46. Varga, R.S.: Gersgorin and his Circles. Springer-Verlag, Heidelberg (2004).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoyin Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Chen, M., Kurths, J. (2009). Dynamical Optimization and Synchronization in Adaptive Complex Networks. In: Gross, T., Sayama, H. (eds) Adaptive Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01284-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01284-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01283-9

  • Online ISBN: 978-3-642-01284-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics