Skip to main content

Adaptive Biological Networks

  • Chapter
  • First Online:
Adaptive Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

Mycelial fungi and acellular slime molds grow as self-organized networks that explore new territory to search for resources, whilst maintaining an effective internal transport system in the face of continuous attack or random damage. These networks adapt during development by selective reinforcement of major transport routes and recycling of the intervening redundant material to support further extension. In the case of fungi, the predicted transport efficiency of the weighted network is better than evenly weighted networks with the same topology, or standard reference networks. Experimentally, nutrient movement can be mapped using radio-tracers and scintillation imaging, and shows more complex transport dynamics, with synchronized oscillations and switching between different pre-existing routes. The significance of such dynamics to the interplay between transport control and topology is not yet known. In a similar manner, the resilience of the network can be tested in silico and experimentally using grazing invertebrates. Both approaches suggest that the same structures that confer good transport efficiency also show good resilience, with the persistence of a centrally connected core. The acellular slime mold, Physarum polycephalum also forms efficient networks between food sources, with a good balance between total cost, transit distance and fault tolerance. In this case, network formation can be captured by a mathematical model driven by non-linear positive reinforcement of tubes with high flux, and decay of tubes with low flux. We argue that organization of these simple planar networks has been honed by evolution, and they may exemplify potential solutions to real-world compromises between search strategy, transport efficiency, resilience and cost in other domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barrat, A., Barthelemy, M., Vespignani, A.: Modeling the evolution of weighted networks. Physical Review E 70, 066149 (2004)

    Article  Google Scholar 

  2. Barrat, A., Barthelemy, M., Vespignani, A.: The effects of spatial constraints on the evolution of weighted complex networks. Journal of Statistical Mechanics p. P05003 (2005)

    Google Scholar 

  3. Bebber, D., Hynes, J., Darrah, P., Boddy, L., Fricker, M.: Biological solutions to transport network design. Proceedings of the Royal Society B 274, 2307–2315 (2007)

    Google Scholar 

  4. Bebber, D., Tlalka, M., Hynes, J., Darrah, P., Ashford, A., Watkinson, S., Boddy, L., Fricker, M.: Imaging complex nutrient dynamics in mycelial networks. In: G. Gadd, S. Watkinson, P. Dyer (eds.) Fungi in the Environment, vol. 25, pp. 3–21. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  5. Boddy, L., Jones, T.: Mycelial responses in heterogeneous environments: parallels with macroorganisms. In: G. Gadd, S. Watkinson, P. Dyer (eds.) Fungi in the Environment, vol. 25, pp. 112–158. Cambridge University Press, Cambridge (2007)

    Google Scholar 

  6. Boddy, L., Wells, J.M., Culshaw, C., Donnelly, D.P.: Fractal analysis in studies of mycelium in soil. Geoderma 88, 301–328 (1999)

    Article  Google Scholar 

  7. Bretherton, S., Tordoff, G.M., Jones, T.H., Boddy, L.: Compensatory growth of Phanerochaete velutina mycelial systems grazed by Folsomia candida (collembola). FEMS Microbiology Ecology 58, 33–40 (2006)

    Article  Google Scholar 

  8. British Railways Board: The development of the major railway trunk routes (1965)

    Google Scholar 

  9. British Transport Commission: The reshaping of british railways - part 1: report (1963)

    Google Scholar 

  10. Buhl, J., Gautrais, J., Reeves, N., Sole, R.V., Valverde, S., Kuntz, P., Theraulaz, G.: Topological patterns in street networks of self-organized urban settlements. European Physical Journal B 49, 513–522 (2006)

    Article  Google Scholar 

  11. Buhl, J., Gautrais, J., Sole, R.V., Kuntz, P., Valverde, S., Deneubourg, J.L., Theraulaz, G.: Efficiency and robustness in ant networks of galleries. European Physical Journal B 42, 123–129 (2004)

    Article  Google Scholar 

  12. Cairney, J.W.G.: Basidiomycete mycelia in forest soils: dimensions, dynamics and roles in nutrient distribution. Mycological Research 109, 7–20 (2005)

    Article  Google Scholar 

  13. Cardillo, A., Scellato, S., Latora, V., Porta, S.: Structural properties of planar graphs of urban street patterns. Physical Review E 73, 066107 (2006)

    Article  Google Scholar 

  14. Dorigo, M., Di Caro, G., Gambardella, L.M.: Ant algorithms for discrete optimization. Artificial Life 5, 137–172 (1999)

    Article  Google Scholar 

  15. Elliott, M.L., Watkinson, S.C.: The effect of alpha-aminoisobutyric-acid on wood decay and wood spoilage fungi. International Biodeterioration 25, 355–371 (1989)

    Article  Google Scholar 

  16. Ferguson, B.A., Dreisbach, T.A., Parks, C.G., Filip, G.M., Schmitt, C.L.: Coarse-scale population structure of pathogenic Armillaria species in a mixed-conifer forest in the blue mountains of northeast oregon. Canadian Journal of Forest Research 33, 612–623 (2003)

    Article  Google Scholar 

  17. Freeman, L.C.: Set of measures of centrality based on betweenness. Sociometry 40, 35–41 (1977)

    Article  Google Scholar 

  18. Fricker, M., Bebber, D., Boddy, L.: Mycelial networks: structure and dynamics. In: L. Boddy, J. Frankland, P. van West (eds.) Ecology of Saprotrophic Basidiomycetes, vol. 28, pp. 3–18. Academic Press, Amsterdam (2008)

    Chapter  Google Scholar 

  19. Fricker, M., Boddy, L., Bebber, D.: Network organisation of mycelial fungi. In: R. Howard, N. Gow (eds.) The Mycota, vol. VIII, pp. 309–330. Springer-Verlag, Berlin (2007)

    Google Scholar 

  20. Fricker, M., Lee, J., Bebber, D., Tlalka, M., Hynes, J., Darrah, P., Watkinson, S., Boddy, L.: Imaging complex nutrient dynamics in mycelial networks. Journal of Microscopy 231, 299–316 (2008)

    Article  Google Scholar 

  21. Fricker, M., Lee, J., Boddy, L., Bebber, D.: The interplay between structure and function in fungal networks. Topologica 1, 004 (2008)

    Google Scholar 

  22. Fricker, M.D., Tlalka, M., Bebber, D., Takagi, S., Watkinson, S.C., Darrah, P.R.: Fourier-based spatial mapping of oscillatory phenomena in fungi. Fungal Genetics and Biology 44, 1077–1084 (2007)

    Article  Google Scholar 

  23. Gastner, M.T., Newman, M.E.J.: Shape and efficiency in spatial distribution networks. Journal of Statistical Mechanics p. P01015 (2006)

    Google Scholar 

  24. Glass, N.L., Jacobson, D.J., Shiu, P.K.T.: The genetics of hyphal fusion and vegetative incompatibility in filamentous ascomycete fungi. Annual Review of Genetics 34, 165–186 (2000)

    Article  Google Scholar 

  25. Glass, N.L., Rasmussen, C., Roca, M.G., Read, N.D.: Hyphal homing, fusion and mycelial interconnectedness. Trends in Microbiology 12, 135–141 (2004)

    Article  Google Scholar 

  26. Haggett, P., Chorley, R.: Network Analysis in Geography. Arnold, London (1969)

    Google Scholar 

  27. Harold, S., Tordoff, G.M., Jones, T.H., Boddy, L.: Mycelial responses of Hypholoma fasciculare to collembola grazing: effect of inoculum age, nutrient status and resource quality. Mycological Research 109, 927–935 (2005)

    Article  Google Scholar 

  28. Helbing, D.: Traffic and related self-driven many-particle systems. Reviews of Modern Physics 73, 1067–1141 (2001)

    Article  Google Scholar 

  29. Hitchcock, D., Glasbey, C.A., Ritz, K.: Image analysis of space-filling by networks: application to a fungal mycelium. Biotechnology Techniques 10, 205–210 (1996)

    Article  Google Scholar 

  30. Kampichler, C., Rolschewski, J., Donnelly, D.P., Boddy, L.: Collembolan grazing affects the growth strategy of the cord-forming fungus Hypholoma fasciculare. Soil Biology and Biochemistry 36, 591–599 (2004)

    Article  Google Scholar 

  31. Kim, K.W., Roon, R.J.: Transport and metabolic effects of alpha-aminoisobutyric-acid in Saccharomyces cerevisiae. Biochimica et Biophysica Acta 719, 356–362 (1982)

    Google Scholar 

  32. Kobayashi, R., Tero, A., Nakagaki, T.: Mathematical model for rhythmic protoplasmic movement in the true slime mold. Journal of Mathematical Biology 53, 273–286 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Lamour, A., Termorshuizen, A.J., Volker, D., Jeger, M.J.: Network formation by rhizomorphs of Armillaria lutea in natural soil: their description and ecological significance. FEMS Microbiology Ecology 62, 222–232 (2007)

    Article  Google Scholar 

  34. Latora, V., Marchiori, M.: Efficient behavior of small-world networks. Physical Review Letters 87, 198701 (2001)

    Article  Google Scholar 

  35. Latora, V., Marchiori, M.: Economic small-world behavior in weighted networks. European Physical Journal B 32, 249–263 (2003)

    Article  Google Scholar 

  36. Latora, V., Marchiori, M.: A measure of centrality based on network efficiency. New Journal of Physics 9, 188 (2007)

    Google Scholar 

  37. Lilly, W.W., Higgins, S.M., Wallweber, G.J.: Uptake and translocation of 2-aminoisobutyric acid by Schizophyllum commune. Experimental Mycology 14, 169–177 (1990)

    Article  Google Scholar 

  38. Nakagaki, T.: Smart behavior of true slime mold in a labyrinth. Research in Microbiology 152, 767–770 (2001)

    Article  Google Scholar 

  39. Nakagaki, T., Guy, R.D.: Intelligent behaviors of amoeboid movement based on complex dynamics of soft matter. Soft Matter 4, 57–67 (2008)

    Article  Google Scholar 

  40. Nakagaki, T., Iima, M., Ueda, T., Nishiura, Y., Saigusa, T., Tero, A., Kobayashi, R., Showalter, K.: Minimum-risk path finding by an adaptive amoebal network. Physical Review Letters 99, 068104 (2007)

    Google Scholar 

  41. Nakagaki, T., Kobayashi, R., Nishiura, Y., Ueda, T.: Obtaining multiple separate food sources: behavioural intelligence in the Physarum plasmodium. Proceedings of the Royal Society of London Series B 271, 2305–2310 (2004)

    Google Scholar 

  42. Nakagaki, T., Saigusa, T., Tero, A., Kobayashi, R.: Effects of amount of food on path selection in the transport network of an amoeboid organism. In: Proceedings of the International Symposium on Topological Aspects of Critical Systems and Networks. World Scientific (2007)

    Google Scholar 

  43. Nakagaki, T., Yamada, H., Hara, M.: Smart network solutions in an amoeboid organism. Biophysical Chemistry 107, 1–5 (2004)

    Article  Google Scholar 

  44. Nakagaki, T., Yamada, H., Toth, A.: Maze-solving by an amoeboid organism. Nature 407, 470–470 (2000)

    Article  Google Scholar 

  45. Nakagaki, T., Yamada, H., Toth, A.: Path finding by tube morphogenesis in an amoeboid organism. Biophysical Chemistry 92, 47–52 (2001)

    Article  Google Scholar 

  46. Ogilvie-Villa, S., Debusk, R.M., Debusk, A.G.: Characterization of 2-aminoisobutyric acid transport in Neurospora crassa – a general amino-acid permease-specific substrate. Journal of Bacteriology 147, 944–948 (1981)

    Google Scholar 

  47. Olsson, S., Gray, S.N.: Patterns and dynamics of 32P-phosphate and labelled 2-aminoisobutyric acid (14C-AIB) translocation in intact basidiomycete mycelia. FEMS Microbiology Ecology 26, 109–120 (1998)

    Article  Google Scholar 

  48. Rayner, A., Griffith, G., Ainsworth, A.: Mycelial interconnectedness. In: N. Gow, G. Gadd (eds.) The Growing Fungus, pp. 21–40. Chapman and Hall, London (1994)

    Chapter  Google Scholar 

  49. Rayner, A., Watkins, Z., Beeching, J.: Self-integration - an emerging concept from the fungal mycelium. In: N. Gow, G. Robson, G. Gadd (eds.) The Fungal Colony, pp. 1–24. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  50. Read, D.: Mycorrhizal fungi – the ties that bind. Nature 388, 517–518 (1997)

    Article  Google Scholar 

  51. Salathe, M., May, R.M., Bonhoeffer, S.: The evolution of network topology by selective removal. Journal of the Royal Society Interface 2, 533–536 (2005)

    Article  Google Scholar 

  52. Simard, S.W., Durall, D.M.: Mycorrhizal networks: a review of their extent, function, and importance. Canadian Journal of Botany 82, 1140–1165 (2004)

    Article  Google Scholar 

  53. Simard, S.W., Perry, D.A., Jones, M.D., Myrold, D.D., Durall, D.M., Molina, R.: Net transfer of carbon between ectomycorrhizal tree species in the field. Nature 388, 579–582 (1997)

    Article  Google Scholar 

  54. Smith, M.L., Bruhn, J.N., Anderson, J.B.: The fungus Armillaria bulbosa is among the largest and oldest living organisms. Nature 356, 428–431 (1992)

    Article  Google Scholar 

  55. Strogatz, S.H.: From kuramoto to crawford: exploring the onset of synchronization in populations of coupled oscillators. Physica D 143, 1–20 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  56. Takamatsu, A., Tanaka, R., Yamada, H., Nakagaki, T., Fujii, T., Endo, I.: Spatiotemporal symmetry in rings of coupled biological oscillators of Physarum plasmodial slime mold. Physical Review Letters 8707, 078102 (2001)

    Google Scholar 

  57. Tero, A., Kobayashi, R., Nakagaki, T.: A coupled-oscillator model with a conservation law for the rhythmic amoeboid movements of plasmodial slime molds. Physica D 205, 125–135 (2005)

    Article  MATH  Google Scholar 

  58. Tero, A., Kobayashi, R., Nakagaki, T.: Physarum solver: A biologically inspired method of road-network navigation. Physica A 363, 115–119 (2006)

    Article  Google Scholar 

  59. Tero, A., Kobayashi, R., Nakagaki, T.: A mathematical model for adaptive transport network in path finding by true slime mold. Journal of Theoretical Biology 244, 553–564 (2007)

    Article  MathSciNet  Google Scholar 

  60. Tero, A., Nakagaki, T., Toyabe, K., Yumili, K., Kobayashi, R.: A method inspired by physarum for solving the steiner problem. International Journal for Unconventional Computing in press (2009)

    Google Scholar 

  61. Tero, A., Yumiki, K., Kobayashi, R., Saigusa, T., Nakagaki, T.: Flow-network adaptation in physarum amoebae. Theory in Biosciences 127, 89–94 (2008)

    Article  Google Scholar 

  62. Thompson, W., Rayner, A.D.M.: Structure and development of mycelial cord systems of Phanerochaete laevis in soil. Transactions of the British Mycological Society 78, 193–200 (1982)

    Article  Google Scholar 

  63. Tlalka, M., Bebber, D., Darrah, P., Watkinson, S., Fricker, M.: Dynamic resource allocation and foraging strategy in mycelial systems. Fungal Genetics and Biology 45, 1111–1121 (2008)

    Article  Google Scholar 

  64. Tlalka, M., Bebber, D., Darrah, P.R., Watkinson, S.C., Fricker, M.D.: Emergence of self-organised oscillatory domains in fungal mycelia. Fungal Genetics and Biology 44, 1085–1095 (2007)

    Article  Google Scholar 

  65. Tlalka, M., Hensman, D., Darrah, P.R., Watkinson, S.C., Fricker, M.D.: Noncircadian oscillations in amino acid transport have complementary profiles in assimilatory and foraging hyphae of Phanerochaete velutina. New Phytologist 158, 325–335 (2003)

    Article  Google Scholar 

  66. Tlalka, M., Watkinson, S.C., Darrah, P.R., Fricker, M.D.: Continuous imaging of amino-acid translocation in intact mycelia of Phanerochaete velutina reveals rapid, pulsatile fluxes. New Phytologist 153, 173–184 (2002)

    Article  Google Scholar 

  67. Tordoff, G.M., Boddy, L., Jones, T.H.: Grazing by Folsomia candida (collembola) differentially affects mycelial morphology of the cord-forming basidiomycetes Hypholoma fasciculare, Phanerochaete velutina and Resinicium bicolor. Mycological Research 110, 335–345 (2006)

    Article  Google Scholar 

  68. Tordoff, G.M., Boddy, L., Jones, T.H.: Species-specific impacts of collembola grazing on fungal foraging ecology. Soil Biology and Biochemistry 40, 434–442 (2008)

    Article  Google Scholar 

  69. Watkinson, S.C.: Inhibition of growth and development of Serpula lacrimans by the non-metabolized amino-acid analog alpha-aminoisobutyric-acid. FEMS Microbiology Letters 24, 247–250 (1984)

    Google Scholar 

  70. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  71. Wood, J., Tordoff, G.M., Jones, T.H., Boddy, L.: Reorganization of mycelial networks of Phanerochaete velutina in response to new woody resources and collembola (Folsomia candida) grazing. Mycological Research 110, 985–993 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark D. Fricker .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fricker, M.D., Boddy, L., Nakagaki, T., Bebber, D.P. (2009). Adaptive Biological Networks. In: Gross, T., Sayama, H. (eds) Adaptive Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01284-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01284-6_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01283-9

  • Online ISBN: 978-3-642-01284-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics