Skip to main content

Social Group Dynamics in Networks

  • Chapter
  • First Online:
Adaptive Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

The rich set of interactions between individuals in the society results in complex community structure, capturing highly connected circles of friends, families, or professional cliques in a social network. Due to the frequent changes in the activity and communication patterns of individuals, the associated social and communication network is subject to constant evolution. The cohesive groups of people in such networks can grow by recruiting new members, or contract by loosing members; two (or more) groups may merge into a single community, while a large enough social group can split into several smaller ones; new communities are born and old ones may disappear. We discuss a new algorithm based on a clique percolation technique, that allows to investigate in detail the time dependence of communities on a large scale and as such, to uncover basic relationships of the statistical features of community evolution. According to the results, the behaviour of smaller collaborative or friendship circles and larger communities, e.g., institutions show significant differences. Social groups containing only a few members persist longer on average when the fluctuations of the members is small. In contrast, we find that the condition for stability for large communities is continuous changes in their membership, allowing for the possibility that after some time practically all members are exchanged.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aiello, W., Chung, F., Lu, L.: A random graph model for massive graphs. In: Proc. 32nd ACM Symp. on the Theory Comput., pp. 171–180, ACM, New York (2000)

    Google Scholar 

  2. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74, 47–97 (2002)

    Article  Google Scholar 

  3. Antonov, A.V., Mewes, H.W.: Complex functionality of gene groups identified from high-throughput data. J. Mol. Biol. 363(1), 289–296 (2006)

    Article  Google Scholar 

  4. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  Google Scholar 

  5. Barabási, A.L., Jeong, H., Néda, Z., Ravasz, E., Schubert, A., Vicsek, T.: Evolution of the social network of scientific collaborations. Physica A 311, 590–614 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  6. Batagelj, V., Zaveršnik, M.: Short cycle connectivity. Discrete Math. 307, 310–318 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  7. Baumes, J., Goldberg, M., Magdon-Ismail, M.: Efficient identification of overlapping communities. Lect. Notes Comput. Sci. 3495, 27–36 (2005)

    Article  Google Scholar 

  8. Csermely, P.: Weak Links. Springer Verlag, Heidelberg, Germany (2006)

    Google Scholar 

  9. Derényi, I., Palla, G., Vicsek, T.: Clique percolation in random networks. Phys. Rev. Lett. 94, 160202 (2005)

    Article  Google Scholar 

  10. Dodds, P.S., Muhamad, R., Watts, D.J.: An experimental study of search in global social networks. Science 301, 827–829 (2003)

    Article  Google Scholar 

  11. Ebel, H., Davidsen, J., Bornholdt, S.: Dynamics of social networks. Complexity 8, 24–27 (2002)

    Article  MathSciNet  Google Scholar 

  12. Ebel, H., Mielsch, L.I., Bornholdt, S.: Scale-free topology of e-mail networks. Phys. Rev. E 66, 35103(R) (2002)

    Google Scholar 

  13. Eckmann, J.P., Moses, E., Sergi, D.: Entropy of dialogues creates coherent structures in e-mail traffic. Proc. Natl. Acad. Sci. USA 101, 14333–14337 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Everett, M.G., Borgatti, S.P.: Analyzing clique overlap. Connections 21, 49–61 (1998)

    Google Scholar 

  15. Everitt, B.S.: Cluster Analysis, 3th edn. Edward Arnold, London (1993)

    Google Scholar 

  16. Farkas, I.J., Ábel, D., Palla, G., Vicsek, T.: Weighted network modules. New J. Phys. 9, 180 (2007)

    Article  Google Scholar 

  17. Fortunato, S., Barthelemy, M.: Resolution limit in community detection. Proc. Natl. Acad. Sci. USA 104, 36–41 (2007)

    Article  Google Scholar 

  18. Gfeler, D., Chappelier, J.C., Rios, P.D.L.: Finding instabilities in the community structure of complex networks. Phys. Rev. E 72, 056135 (2005)

    Article  Google Scholar 

  19. Girvan, M., Newman, M.E.J.: Community structure in social and biological networks. Proc. Natl. Acad. Sci. USA 99, 7821–7826 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  20. Granovetter, M.: Decision Making: Alternatives to Rational Choice Models Economic Action and Social Structure: The Problem of Embeddedness. SAGE, Newbury Park, CA (1992)

    Google Scholar 

  21. Granovetter, M.S.: The strength of weak ties. Am. J. Sociol. 78, 1360–1380 (1973)

    Article  Google Scholar 

  22. Grossman, J.W.: The evolution of the mathematical research collaboration graph. Congressus Numerantium 158, 202–212 (2002)

    MathSciNet  Google Scholar 

  23. Grossman, J.W., Ion, P.D.F.: On a Portion of the well-known collaboration graph. Congressus Numerantium 108, 129–131 (1995)

    MathSciNet  MATH  Google Scholar 

  24. Guimerà, R., Amaral, L.A.N.: Functional cartography of complex metabolic networks. Nature 433, 895–900 (2005)

    Article  Google Scholar 

  25. Guimerá, R., Danon, L., Diaz-Guilera, A., Giralt, F., Arenas, A.: Self-similar community structure in organisations. Phys. Rev. E 68, 065103 (2003)

    Article  Google Scholar 

  26. Guimerà, R., Mossa, S., Turtschi, A., Amaral, L.A.N.: The worldwide air transportation network: Anomalous centrality, community structure, and cities’ global roles. Proc. Natl. Acad. Sci. USA 102, 7794–7799 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  27. Guimerà, R., Sales-Pardo, M., Amaral, L.A.N.: Module identification in bipartite and directed networks. Phys. Rev. E 76, 036102 (2007)

    Article  Google Scholar 

  28. Guimerá, R., Uzzi, B., Spiro, J., Amaral, L.A.N.: Team assembly mechanisms determine collaboration network structure and team performance. Science 308, 697–702 (2005)

    Article  Google Scholar 

  29. Guldener, U., Munsterkotter, M., Kastenmuller, G., Strack, N., van Helden, J.: CYGD: The comprehensive yeast genome database. Nucl. Acad. Res. 33, D364–D368 (2005)

    Article  Google Scholar 

  30. Heimo, T., Saramäki, J., Onnela, J.P., Kaski, K.: Spectral and network methods in the analysis of correlation matrices of stock returns. Physica A-Statist. Mech. Appl. 383, 147–151 (2007)

    Article  Google Scholar 

  31. Holme, P., Edling, C.R., Liljeros, F.: Structure and time-evolution of an internet dating community. Soc. Networks 26, 155–174 (2004)

    Article  Google Scholar 

  32. Hopcroft, J., Khan, O., Kulis, B., Selman, B.: Tracking evolving communities in large linked networks. Proc. Natl. Acad. Sci. USA 101, 5249–5253 (2004)

    Article  Google Scholar 

  33. Knudsen, S.: A Guide to Analysis of DNA Microarray Data, 2nd edn. Wiley-Liss, New York (2004)

    Google Scholar 

  34. Kossinets, G., Watts, D.J.: Empirical analysis of an evolving social network. Science 311, 88–90 (2006)

    Article  MathSciNet  Google Scholar 

  35. Krogan, N.J., Cagney, G., Yu, H.Y., Zhong, G.Q., Guo, X.H., Ignatchenko, A., Li, J., Pu, S.Y., Datta, N., Tikuisis, A.P., Punna, T., Peregrin-Alvarez, J.M., Shales, M., Zhang, X., Davey, M., Robinson, M.D., Paccanaro, A., Bray, J.E., Sheung, A., Beattie, B., Richards, D.P., Canadien, V., Lalev, A., Mena, F., Wong, P., Starostine, A., Canete, M.M., Vlasblom, J., Orsi, S.W.C., Collins, S.R., Chandran, S., Haw, R., Rilstone, J.J., Gandi, K., Thompson, N.J., Musso, G., Onge, P.S., Ghanny, S., Lam, M.H.Y., Butland, G., Altaf-Ui, A.M., Kanaya, S., Shilatifard, A., O’Shea, E., Weissman, J.S., Ingles, C.J., Hughes, T.R., Parkinson, J., Gerstein, M., Wodak, S.J., Emili, A., Greenblatt, J.F.: Global landscape of protein complexes in the yeast Saccharomyces cerevisiae. Nature 440, 637–643 (2006)

    Article  Google Scholar 

  36. Kumpula, J.M., Saramäki, J., Kaski, K., Kertész, J.: Limited resolution in complex network community detection with Potts model approach. Eur. Phys. J. B 56, 41–45 (2007)

    Article  Google Scholar 

  37. Li, C., Maini, P.K.: An evolving network model with community structure. J. Phys. A: Math. Gen. 38, 9741–9749 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  38. Liljeros, F., Edling, C.R., Amaral, L.A.N., Stanley, H.E., Aberg, Y.: The web of human sexual contacts. Nature 411, 907–908 (2001)

    Article  Google Scholar 

  39. Mendes, J.F.F., Dorogovtsev, S.N.: Evolution of networks: From biological nets to the Internet and WWW . Oxford University Press, Oxford (2003)

    Google Scholar 

  40. Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Phys. Rev. E 77, 016107 (2008)

    Article  MathSciNet  Google Scholar 

  41. Newman, M.E.J.: Phys. Rev. E 64, 025102 (2001)

    Article  Google Scholar 

  42. Newman, M.E.J.: From the cover: The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  43. Newman, M.E.J.: Detecting community structure in networks. Eur. Phys. J. B 38, 321–330 (2004)

    Google Scholar 

  44. Newman, M.E.J.: Fast algorithm for detecting community structure in networks. Phys. Rev. E 69, 066133 (2004)

    Article  Google Scholar 

  45. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69, 026113 (2004)

    Article  Google Scholar 

  46. Newman, M.E.J., Leicht, E.A.: Mixture models and exploratory analysis in networks. Proc. Natl. Acad. Sci. USA 104, 9564–9569 (2007)

    Article  MATH  Google Scholar 

  47. Newman, M.E.J., Park, J.: Why social networks are different from other types of networks. Phys. Rev. E 68, 036122 (2003)

    Article  Google Scholar 

  48. Noh, J.D., Jeong, H.C., Ahn, Y.Y., Jeong, H.: Growing network model for community with group structure. Phys. Rev. E 71, 036131 (2005)

    Article  Google Scholar 

  49. Onnela, J.P., Chakraborti, A., Kaski, K., Kertész, J., Kanto, A.: Dynamics of market correlations: Taxonomy and portfolio analysis. Phys. Rev. E 68, 056110 (2003)

    Article  Google Scholar 

  50. Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., Kertész, J., Barabási, A.L.: Structure and tie strengths in mobile communication networks. Proc. Natl. Acad. Sci. USA 104, 7332–7336 (2007)

    Article  Google Scholar 

  51. Onnela, J.P., Saramäki, J., Hyvönen, J., Szabó, G., de Menezes, M.A., Kaski, K., Barabási, A.L., Kertész, J.: Analysis of a large-scale weighted network of one-to-one human communication. New J. Phys. 9, 179 (2007)

    Article  Google Scholar 

  52. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature 446, 664–667 (2007)

    Article  Google Scholar 

  53. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435, 814–818 (2005)

    Article  Google Scholar 

  54. Palla, G., Farkas, I.J., Pollner, P., Derényi, I., Vicsek, T.: Directed network modules. New J. Phys. 9, 186 (2007)

    Article  Google Scholar 

  55. Palla, G., Vicsek, T., Barabási, A.L.: Community dynamics in social networks. Fluctuation and Noise Letters 7, L273–L287 (2007)

    Article  Google Scholar 

  56. Pollner, P., Palla, G., Vicsek, T.: Preferential attachment of communities: The same principle, but a higher level. Europhys. Lett. 73, 478–484 (2006)

    Article  MathSciNet  Google Scholar 

  57. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., parisi, D.: Defining and identifying communities in networks. Proc. Natl. Acad. Sci. USA 101, 2658–2663 (2004)

    Article  Google Scholar 

  58. Ramasco, J.J., Morris, S.A.: Social inertia in collaboration networks. Phys. Rev. E 73, 016122 (2006)

    Article  Google Scholar 

  59. Ravasz, E., Somera, A.L., Mongru, D.A., Oltvai, Z.N., Barabási, A.L.: Hierarchical organization of modularity in metabolic networks. Science 297, 1551–1555 (2002)

    Article  Google Scholar 

  60. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a Potts Model. Phys. Rev. Lett. 93, 218701 (2004)

    Article  Google Scholar 

  61. Reichardt, J., Bornholdt, S.: Statistical mechanics of community detection. Phys. Rev. E 74, 016110 (2006)

    Article  MathSciNet  Google Scholar 

  62. Rives, A.W., Galitski, T.: Modular organization of cellular networks. Proc. Natl. Acad. Sci. USA 100, 1128–1133 (2003)

    Article  Google Scholar 

  63. Scott, J.: Social Network Analysis: A Handbook, 2nd edn. Sage Publications, London (2000)

    Google Scholar 

  64. Shiffrin, R.M., Börner, K.: Mapping knowledge domains. Proc. Natl. Acad. Sci. USA 101, 5183–5185 (2004)

    Article  Google Scholar 

  65. Spirin, V., Mirny, K.A.: Protein complexes and functional modules in molecular networks. Proc. Natl. Acad. Sci. USA 100, 12123–12128 (2003)

    Article  Google Scholar 

  66. Szabó, G., Fáth, G.: Evolutionary games on graphs. Phys. Rep.-Rev. Section Phys. Lett. 446, 97–216 (2007)

    Google Scholar 

  67. Szabó, G., Vukov, J., Szolnoki, A.: Phase diagrams for an evolutionary prisoner’s dilemma game on two-dimensional lattices. Phys. Rev. E 72, 047107 (2005)

    Article  Google Scholar 

  68. Vicsek, T.: Phase transitions and overlapping modules in complex networks. Physica A-Statist. Mech. Appl. 378, 20–32 (2007)

    Article  Google Scholar 

  69. Vukov, J., Szabó, G., Szolnoki, A.: Cooperation in the noisy case: Prisoner’s dilemma game on two types of regular random graphs. Phys. Rev. E 73, 067103 (2006)

    Article  Google Scholar 

  70. Wagner, C.S., Leydesdorff, L.: Network structure, self-organization, and the growth of international collaboration in science. Res. Policy 34, 1608–1618 (2005)

    Article  Google Scholar 

  71. Warner, S.: E-prints and the open archives initiative. Library Hi Tech 21, 151–158 (2003)

    Article  Google Scholar 

  72. Wasserman, S., Faust, K.: Social network analysis: methods and applications structural analysis in the social sciences. Cambridge University Press, Cambridge (1994)

    Google Scholar 

  73. Watts, D.J.: A twenty-first century science. Nature 445, 489 (2007)

    Article  Google Scholar 

  74. Watts, D.J., Dodds, P.S., Newman, M.E.J.: Identity and search in social networks. Science 296, 1302–1305 (2002)

    Article  Google Scholar 

  75. Watts, D.J., Strogatz, S.H.: Collective dynamics of ’small-world’ networks. Nature 393, 440–442 (1998)

    Article  Google Scholar 

  76. White, H.C., Boorman, S.A., Breiger, R.R.: Social structure from multiple networks. I. Blockmodels of roles and positions. Am. J. Sociol. 81, 730–780 (1976)

    Article  Google Scholar 

  77. Wilkinson, D.M., Huberman, B.A.: A method for finding communities of related genes. Proc. Natl. Acad. Sci. USA 101, 5241–5248 (2004)

    Article  Google Scholar 

  78. Yeung, Y.Y., Liu, T.C.Y., Ng, P.H.: A social network analysis of research collaboration in physics education. Am. J. Phys. 73, 145–150 (2005)

    Article  Google Scholar 

  79. Zhang, S., Wang, R.S., Zhang, X.S.: Uncovering fuzzy community structure in complex networks. Phys. Rev. E 76, 046103 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Palla, G., Pollner, P., Barabási, AL., Vicsek, T. (2009). Social Group Dynamics in Networks. In: Gross, T., Sayama, H. (eds) Adaptive Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01284-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01284-6_2

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01283-9

  • Online ISBN: 978-3-642-01284-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics