Skip to main content

Generative Network Automata: A Generalized Framework for Modeling Adaptive Network Dynamics Using Graph Rewritings

  • Chapter
  • First Online:
Adaptive Networks

Part of the book series: Understanding Complex Systems ((UCS))

Abstract

A variety of modeling frameworks have been proposed and utilized in complex systems studies, including dynamical systems models that describe state transitions on a system of fixed topology, and self-organizing network models that describe topological transformations of a network with little attention paid to dynamical state changes. Earlier network models typically assumed that topological transformations are caused by exogenous factors, such as preferential attachment of new nodes and stochastic or targeted removal of existing nodes. However, many real-world complex systems exhibit both state transition and topology transformation simultaneously, and they evolve largely autonomously based on the system’s own states and topologies. Here we show that, by using the concept of graph rewriting, both state transitions and autonomous topology transformations of complex systems can be seamlessly integrated and represented in a unified computational framework. We call this novel modeling framework “Generative Network Automata (GNA)”. In this chapter, we introduce basic concepts of GNA, its working definition, its generality to represent other dynamical systems models, and some of our latest results of extensive computational experiments that exhaustively swept over possible rewriting rules of simple binary-state GNA. The results revealed several distinct types of the GNA dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bar-Yam, Y. (1997) Dynamics of Complex Systems. Westview Press.

    Google Scholar 

  2. Wiggins, S. (2003) Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2nd Ed. Springer.

    Google Scholar 

  3. Boccara, N. (2004) Modeling Complex Systems. Springer-Verlag.

    Google Scholar 

  4. Strogatz, S. H. (1994) Nonlinear Dynamics and Chaos. Westview Press.

    Google Scholar 

  5. McCulloch, W. S. and Pitts, W. (1943) A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 5:115–133.

    Article  MATH  MathSciNet  Google Scholar 

  6. Hopfield, J. J. (1982) Neural networks and physical systems with emergent collective computational abilities. PNAS 79:2554–2558.

    Article  MathSciNet  Google Scholar 

  7. Kauffman, S. A. (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. J. Theor. Biol. 22:437–467.

    Article  MathSciNet  Google Scholar 

  8. Derrida, B. and Pomeau, Y. (1986) Random networks of automata: A simple annealed approximation. Europhys. Lett. 1:45–49.

    Article  Google Scholar 

  9. Kauffman, S. A. (1993) The Origins of Order. Oxford University Press, Oxford.

    Google Scholar 

  10. Wolfram, S. (1984) Universality and complexity in cellular automata. Physica D 10:1–35.

    Article  MathSciNet  Google Scholar 

  11. Ilachinski, A. (2001) Cellular Automata: A Discrete Universe. World Scientific.

    Google Scholar 

  12. May, R. M. (1976) Simple mathematical models with very complicated dynamics. Nature 261:459–467.

    Article  Google Scholar 

  13. Berlekamp, E. R., Conway, J. H., and Guy, R. K. (1982) Winning Ways for Your Mathematical Plays Vol. 2: Games in Particular, Chapter 25: “What is Life?”. Academic Press.

    Google Scholar 

  14. Pearson, J. E. (1993) Complex patterns in a simple system. Science 261:189–192.

    Article  Google Scholar 

  15. Sayama, H. (1999) A new structurally dissolvable self-reproducing loop evolving in a simple cellular automata space. Artificial Life 5:343–365.

    Article  Google Scholar 

  16. Salzberg, C. and Sayama, H. (2004) Complex genetic evolution of artificial self-replicators in cellular automata. Complexity 10(2): 33–39.

    Article  Google Scholar 

  17. Watts, D. J. and Strogatz, S. H. (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442.

    Article  Google Scholar 

  18. Strogatz, S. H. (2001) Exploring complex networks. Nature 410:268–276.

    Article  Google Scholar 

  19. Newman, M., Barabási, A.-L. and Watts, D. J., eds. (2006) The Structure and Dynamics of Networks. Princeton University Press.

    Google Scholar 

  20. Albert, R., Jeong, H. and Barabási, A.-L. (2000) Error and attack tolerance of complex networks. Nature 406:378–382.

    Article  Google Scholar 

  21. Albert, R. and Barabási, A.-L. (2002) Statistical mechanics of complex networks. Rev. Mod. Phys. 74:47–97.

    Article  Google Scholar 

  22. Shargel, B., Sayama, H., Epstein, I. R. and Bar-Yam, Y. (2003) Optimization of robustness and connectivity in complex networks. Phys. Rev. Lett. 90:068701.

    Google Scholar 

  23. da Fontoura Costa, L. (2004) Reinforcing the resilience of complex networks. Phys. Rev. E 69:066127.

    Article  Google Scholar 

  24. Beygelzimer, A., Grinstein, G. M., Linsker, R. and Rish, I. (2005) Improving network robustness by edge modification. Physica A 357:593–612.

    Article  Google Scholar 

  25. Bar-Yam, Y. and Epstein, I. R. (2004) Response of complex networks to stimuli. PNAS 101:4341–4345.

    Article  MATH  MathSciNet  Google Scholar 

  26. Motter, A. E. (2004) Cascade control and defense in complex networks. Phys. Rev. E 93:098701.

    Google Scholar 

  27. de Aguiar, M. A. M. and Bar-Yam, Y. (2005) Spectral analysis and the dynamic response of complex networks. Phys. Rev. E 71:016106.

    Article  Google Scholar 

  28. Zhou, H. and Lipowsky, R. (2005) Dynamic pattern evolution on scale-free networks. PNAS 102:10052–10057.

    Article  Google Scholar 

  29. Tomassini, M. (2006) Generalized automata networks. In Yacoubi, S. E., Chopard, B. & Bandini, S., eds., Cellular Automata: Proceedings of the 7th International Conference on Cellular Automata for Research and Industry (ACRI 2006), pp. 14–28. Springer-Verlag.

    Google Scholar 

  30. Motter, A. E., Matías, M. A., Kurths, J. and Ott, E., eds. (2006) Special Issue: Dynamics on Complex Networks and Applications, Physica D 224.

    Google Scholar 

  31. Gross, T. and Blasius, B. (2008) Adaptive coevolutionary networks: a review. J. R. Soc. Interface 5:259–271.

    Article  Google Scholar 

  32. Holme, P. and Ghoshal, G. (2006) Dynamics of networking agents competing for high centrality and low degree. Phys. Rev. Lett. 96:098701.

    Article  Google Scholar 

  33. Holme, P. and Newman, M. E. J. (2006) Nonequilibrium phase transition in the coevolution of networks and opinions. Phys. Rev. E 74:056108.

    Article  Google Scholar 

  34. Gross, T., D’Lima, C. J. D. and Blasius, B. (2006) Epidemic dynamics on an adaptive network. Phys. Rev. Lett. 96:208701.

    Article  Google Scholar 

  35. Pacheco, J. M., Traulsen, A. and Nowak, M. A. (2006) Coevolution of strategy and structure in complex networks with dynamical linking. Phys. Rev. Lett. 97:258103.

    Article  Google Scholar 

  36. Palla, G., Barabási, A.-L. and Vicsek, T. (2007) Quantifying social group evolution. Nature 446:664–667.

    Article  Google Scholar 

  37. Sayama, H. (2007) Generative network automata: A generalized framework for modeling complex dynamical systems with autonomously varying topologies. Proceedings of The First IEEE Symposium on Artificial Life (IEEE-CI-ALife ’07), IEEE, pp.214–221.

    Google Scholar 

  38. Rozenberg, G., ed. (1997) Handbook of Graph Grammars and Computing by Graph Transformation Volume 1: Foundations. World Scientific.

    Google Scholar 

  39. Claus, V., Ehrig, H. and Rozenberg, G., eds. (1979) Proceedings of the International Workshop on Graph-Grammars and Their Application to Computer Science and Biology, October 30–November 3, 1978, Bad Honnef, Germany. Lecture Notes in Computer Science 73, Springer-Verlag.

    Google Scholar 

  40. Ehrig, H., Nagl, M. and Rozenberg, G., eds. (1983) Proceedings of the Second International Workshop on Graph-Grammars and Their Application to Computer Science, October 4–8, 1982, Haus Ohrbeck, Germany. Lecture Notes in Computer Science 153, Springer-Verlag.

    Google Scholar 

  41. Ehrig, H., Nagl, M., Rozenberg, G. and Rosenfeld, A., eds. (1987) Proceedings of the Third International Workshop on Graph-Grammars and Their Application to Computer Science, December 2–6, 1986, Warrenton, VA. Lecture Notes in Computer Science 291, Springer-Verlag.

    Google Scholar 

  42. Ehrig, H., Kreowski, H.-J. and Rozenberg, G., eds. (1991) Proceedings of the Fourth International Workshop on Graph-Grammars and Their Application to Computer Science, March 5–9, 1990, Bremen, Germany. Lecture Notes in Computer Science 532, Springer-Verlag.

    Google Scholar 

  43. Lindenmayer, A. (1968) Mathematical models for cellular interaction in development I. Filaments with one-sided inputs. J. Theor. Biol. 18:280–289.

    Article  Google Scholar 

  44. Doi, H. (1984) Graph-theoretical analysis of cleavage pattern: Graph developmental system and its application to cleavage pattern of ascidian egg. Development, Growth & Differentiation 26:49-60.

    Article  Google Scholar 

  45. Blostein, D., Fahmy, H. and Grbavec, A. (1996) Issues in the practical use of graph rewriting. In Proceedings of the Fifth International Workshop on Graph Grammars and Their Application to Computer Science, Lecture Notes in Computer Science 1073, Springer, pp. 38–55.

    Google Scholar 

  46. Tomita, K., Kurokawa, H. and Murata, S. (2002) Graph automata: Natural expression of self-replication. Physica D 171:197–210.

    Article  MATH  MathSciNet  Google Scholar 

  47. Hutton T. J. (2002) Evolvable self-replicating molecules in an artificial chemistry. Artificial Life 8:341–356.

    Article  MathSciNet  Google Scholar 

  48. Klavins, E. (2004) Universal self-replication using graph grammars. In Proceedings of the 2004 International Conference on MEMS, NANO and Smart Systems (ICMENS 2004), pp. 198–204.

    Google Scholar 

  49. Klavins, E., Ghrist, R. and Lipsky, D. (2004) Graph grammars for self-assembling robotic systems. In Proceedings of the 2004 IEEE International Conference on Robotics and Automation (ICRA’04), vol. 5, pp. 5293–5300.

    Google Scholar 

  50. Kniemeyer, O., Buck-Sorlin, G. H. and Kurth, W. (2004) A graph grammar approach to artificial life. Artificial Life 10:413–431.

    Article  Google Scholar 

  51. Kurth, W., Kniemeyer, O. and Buck-Sorlin, G. H. (2005) Relational growth grammars – A graph rewriting approach to dynamical systems with a dynamical structure. In Proceedings of the 2004 International Workshop on Unconventional Programming Paradigms (UPP 2004) Lecture Notes in Computer Science 3566, Springer, pp. 56–72.

    Google Scholar 

  52. Nehaniv, C. L. (2004) Asynchronous automata networks can emulate any synchronous automata network. Intl. J. Algebra & Computation 14:719–739.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Sayama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sayama, H., Laramee, C. (2009). Generative Network Automata: A Generalized Framework for Modeling Adaptive Network Dynamics Using Graph Rewritings. In: Gross, T., Sayama, H. (eds) Adaptive Networks. Understanding Complex Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01284-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01284-6_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01283-9

  • Online ISBN: 978-3-642-01284-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics