Skip to main content

Visualization of Macromolecules and Polymer Morphology

  • Chapter
  • First Online:
Scanning Force Microscopy of Polymers

Part of the book series: Springer Laboratory ((SPLABORATORY))

  • 1711 Accesses

Abstract

Polymers and their morphology are characterized by a structural hierarchy on different levels, which belong to molecular, nanometer, mesoscopic, micrometer, and macroscopic length scales, respectively. The analysis of the underlying structure by means of scanning force microscopy (SFM) on the relevant length scale, and in particular the interpretation of SFM micrographs, requires some basic concepts of polymer morphology. This chapter reviews some rudimentary concepts of structural hierarchy in polymers and hence lays the ground for the hands-on SFM examples discussed in later chapters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 149.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For safety precautions see your suppliers manual and warnings.

  2. 2.

    This piezo transducer was damaged by accidental feed with high uncontrolled voltages, the resulting damage and its manifestation in AFM scans, however, is very similar.

  3. 3.

    In the case of a leakage the set up must be disassembled and carefully dried immediately to prevent damage of the scanner or the electronics.

  4. 4.

    A practical limitation for the approach in the field of polymers is the fact that shear forces, similar to contact mode, may cause sample damage or distortion of the underlying morphology.

  5. 5.

    Mica can be conveniently cleaved by placing a piece of pressure sensitive adhesive on top of a planar mica specimen. The tape is carefully peeled off the surface, thus exposing a near atomically smooth, clean surface. In ambient conditions this very hydrophilic surface is rapidly covered with airborne adsorbates.

  6. 6.

    The setpoint amplitude is adjusted to ∼0.9 A0 to 0.95 A0. If the tip loses track of the surface during scanning, the setpoint must be slightly reduced. Next the scan size is stepwise increased while the gains are optimized accordingly, which corresponds to vanishing contrast in the amplitude image.

  7. 7.

    The EPDM rubber used was Keltan® 512, produced by DSM Elastomers. Pure precipitated silica (Ultrasil® VN3) and silica modified with the organosilane (Si 69), as well as carbon black (N 550) were employed as fillers. Masterbatches without curing additives were mixed in a Shaw K1 Mark IV intermeshing mixer of DSM Elastomers Europe BV. Mixing was stopped once the compounds reached a temperature of ca. 110° C. The mixing conditions are given in below. Masterbatches without curing additives were mixed in a Shaw K1 Mark IV intermeshing mixer of DSM Elastomers Europe BV. Mixing was stopped once the compounds reached a temperature of ca. 110° C. The mixing conditions are given in further below.

    Ingredients (phr)

    1

    2

    Kelton® 512

    100

    100

    ZnO

    3

    3

    Stearic acid

    1

    1

    Ultrasil®VN3

    50

    Si 69

    4

    Sunpar® 2280

    30

    30

    MBT

    TMTD

    Sulfur

    N 550

    50

    Mixer acquisition

    1

    2

    Load factor (%)

    54

    54

    Power max (kW)

    50

    49

    Power end (kW)

    40

    37

    Tbatch max (oC)

    113

    108

    Tbatch end (oC)

    112

    107

    E motor (MJ/m3)

    7

    6

    E water (MJ/m3)

    56

    −7

    Mix time (sec)

    312

    205

  8. 8.

    Caution! Consult appropriate literature and ensure that safety regulations are being followed. Strong oxidants and acids are used. Conditions: 0.7 % w/v of potassium permanganate in a mixture of sulfuric acid (95-97%, Merck) and phosphoric acid (85%, Aldrich) in the volumetric ratio of 2:1. Specimens are etched in 0.7 % w/v of the permanganic solution at room temperature typically over 5 h. The etched samples are washed with a diluted sulfuric acid in the volume ratio of 2:7 in distilled water, which is cooled to near the freezing point with ice to prevent the heat of dilution of the original acids from affecting the sample surface. This solution is subsequently decanted. The samples are then washed with hydrogen peroxide (35%) to reduce any remaining manganese dioxide or permanganate. The final step is to wash the sample(s) several times with distilled water, and finally with acetone.

References

  1. Osswald TA, Menges G (1995) Materials science of polymers for engineers. Hanser-Gardner, Cincinnati

    Google Scholar 

  2. Balnois E, Stoll S, Wilkinson KJ, Buffle J, Rinaudo M, Milas M (2000) Macromolecules 33:7440–7442

    Article  CAS  Google Scholar 

  3. Baer E, Hiltner A, Keith HD (1987) Science 235:1015–1022

    Article  CAS  Google Scholar 

  4. Odian G (1991) Principles of polymerization, 3rd edn. Wiley, New York

    Google Scholar 

  5. Kumaki J, Kawauchi T, Okoshi K, Kusanagi H, Yashima E (2007) Angew Chem Int Ed 46(28):5348–5351

    Article  CAS  Google Scholar 

  6. Sperling LH (2001) Introduction to physical polymer science, 3rd edn. Wiley, New York

    Google Scholar 

  7. Strobl G (2000) Eur Phys J E 3:165–183

    Article  CAS  Google Scholar 

  8. G. Reiter, J.-U. Sommer (eds) (2003) Polymer crystallization: obervations, concepts and interpretations (Lecture Notes in Physics). Springer, Berlin

    Google Scholar 

  9. Khoury F, Passaglia E (1976) Treatise on solid state chemistry, vol 3. In Hannay NB (ed) Crystalline and noncrystalline solids, Chap 6. Plenum, New York

    Google Scholar 

  10. Wunderlich B (1973/1976/1980) Macromolecular physics. Academic, New York (Vol. 1: 1973; Vol. 2: 1976; Vol. 3: 1980)

    Google Scholar 

  11. Allen SM, Thomas EL (1999) The structure of materials. Wiley, New York

    Google Scholar 

  12. Schultz JM (2001) Polymer crystallization: the development of crystalline order in thermoplastic polymers. Oxford University Press, Oxford

    Google Scholar 

  13. Sawyer LC, Grubb DT, Meyers GF (2008) Polymer microscopy: characterization and evaluation of materials, 3rd edn. Springer, Berlin

    Book  Google Scholar 

  14. Woodward AE (1988) Atlas of polymer morphology. Hanser, Munich

    Google Scholar 

  15. Woodward AE (1995) Understanding polymer morphology. Hanser, Munich

    Google Scholar 

  16. Cantor CR, Schimmel PR (1980) Biophysical chemistry. W.H. Freeman, San Francisco

    Google Scholar 

  17. Sawyer LC, Jaffe M (1986) J Mater Sci 21:1897–1913

    Article  CAS  Google Scholar 

  18. Lakes RS (1993) Nature 361:511

    Article  Google Scholar 

  19. Cheng J, Deming TJ (2001) J Am Chem Soc 123(38), 9457–9458

    Article  CAS  Google Scholar 

  20. Hansma HG (2001) Annu Rev Phys Chem 52:71

    Article  CAS  Google Scholar 

  21. Sheiko SS, Möller M (2001) Chem Rev 101:4099

    Article  CAS  Google Scholar 

  22. Kumaki J, Nishikawa Y, Hashimoto T (1996) J Am Chem Soc 118:3321

    Article  CAS  Google Scholar 

  23. Uchida E, Ikada Y (1997) Macromolecules 30:5464

    Article  CAS  Google Scholar 

  24. Schönherr H (1999) Ph.D. thesis, University of Twente

    Google Scholar 

  25. Samori P, Ecker C, Gössl I, de Witte PAJ, Cornelissen JJLM, Metselaar GA, Otten MBJ, Rowan AE, Nolte RJM, Rabe JP (2002) Macromolecules 35:5290

    Article  CAS  Google Scholar 

  26. Pfau A, Schrepp W, Horn D (1999) Langmuir 15:3219

    Article  CAS  Google Scholar 

  27. Li J, Piehler LT, Qin D, Baker JR Jr., Tomalia DA, Meier DJ (2000) Langmuir 16:5613

    Article  CAS  Google Scholar 

  28. Snétivy D, Vancso GJ, Rutledge GC (1992) Macromolecules 25:7037

    Article  Google Scholar 

  29. Vancso GJ, Snétivy D, Schönherr H (1998) In Ratner BD, Tsukruk V (eds) Scanning probe microscopy of polymers, Chap. 4. ACS Symposium Series vol 694, pp 67–93

  30. Snétivy D, Vancso GJ (1993) Langmuir 9:2253

    Article  Google Scholar 

  31. Schönherr H, Ringsdorf H, Jaschke M, Butt H-J, Bamberg E, Allinson H, Evans SD (1996) Langmuir 12:3898

    Article  Google Scholar 

  32. Pooley CM, Tabor D (1972) Proc R Soc Lond A 329:251

    Article  CAS  Google Scholar 

  33. Wittman JC, Smith P (1991) Nature 352:414

    Article  Google Scholar 

  34. Schönherr H, Vancso GJ (1998) Polymer 39:5705

    Article  Google Scholar 

  35. Hansma H, Montamedi F, Smith P, Hansma PK, Wittman JC (1992) Polymer 33:647

    Article  CAS  Google Scholar 

  36. Vancso GJ, Förster S, Leist H (1996) Macromolecules 29:2158

    Article  CAS  Google Scholar 

  37. Magonov SN, Kempf S, Kimmig M, Cantow HJ (1991) Polym Bull 26:715

    Article  CAS  Google Scholar 

  38. Snétivy D, Vancso GJ (1992) Macromolecules 25:3320

    Article  Google Scholar 

  39. Snétivy D, Yang HF, Glomm B, Vancso GJ (1994) J Mater Chem 4:55

    Article  Google Scholar 

  40. Frank CW, Rao V, Despotopoulou MM, Pease RFW, Hinsberg WD, Miller RD, Rabolt JF (1996) Science 273:912

    Article  CAS  Google Scholar 

  41. Pickering JP, Vancso GJ (1999) Appl Surf Sci 148:147

    Article  CAS  Google Scholar 

  42. Schönherr H, Pearce R, Vancso GJ unpublished data

    Google Scholar 

  43. Kim HI, Mate CM, Hannibal KA, Perry SS (1999) Phys Rev Lett 82:3496

    Article  CAS  Google Scholar 

  44. Schönherr H, Bailey LE, Frank CW unpublished data

    Google Scholar 

  45. Schönherr H, Frank CW (2003) Macromolecules 36:1188–1198

    Article  CAS  Google Scholar 

  46. Vancso GJ, Nisman R, Snétivy D, Schönherr H, Smith P, Ng C, Yang H (1994) Coll Surf A 87:263

    Article  CAS  Google Scholar 

  47. Bassett DC, Keller A (1962) Philos Mag 7:1553

    Article  CAS  Google Scholar 

  48. Vancso GJ, Schönherr H (1999) In Microstructure and microtribology of polymer surfaces. In Tsukruk VV, Wahl KJ (eds), ACS Symposium Series vol 741, Chap. 19, pp 317–335

    Google Scholar 

  49. Smith PF, Nisman R, Ng C, Vancso GJ (1994) Polym Bull 33:459

    Article  CAS  Google Scholar 

  50. Pearce R, Vancso GJ (1998) Polymer 39:6743

    Article  CAS  Google Scholar 

  51. Schönherr H, Wiyatno W, Pople J, Frank CW, Fuller GG, Gast AP, Waymouth RM (2002) Macromolecules 35:2654

    Article  CAS  Google Scholar 

  52. Magonov SN, Elings V, Whangbo M-H (1997) Surf Sci 372:L385

    Article  Google Scholar 

  53. Lotz B, Wittmann JC (1986) J Polym Sci Polym Phys 24:1541

    Article  CAS  Google Scholar 

  54. Schönherr H, Waymouth RM, Frank CW unpublished data

    Google Scholar 

  55. Schönherr H, Snétivy D, Vancso GJ (1993) Polym Bull 30:567

    Article  Google Scholar 

  56. Krotil HU, Stifter T, Waschipky H, Weishaupt K, Hild S, Marti O (1999) Surf Interface Anal 27:336

    Article  CAS  Google Scholar 

  57. Kresz N, Smausz J, Kokavecz T, Hopp B, Cset M, Hild S, Marti O (2004) Thin Solid Films 453–454:239–244

    Article  CAS  Google Scholar 

  58. Schönherr H, Waymouth RM, Frank CW unpublished data

    Google Scholar 

  59. Schönherr H, Feng CL, Shovsky A (2003) Langmuir 19:10843–10851

    Article  CAS  Google Scholar 

  60. Schönherr H, Frank CW unpublished data

    Google Scholar 

  61. Wunderlich B (1973/1976/1980) Macromolecular physics. Academic, New York (Vol. 1: 1973, Vol. 2: 1976, Vol. 3: 1980)

    Google Scholar 

  62. Schönherr H, Waymouth RM, Frank CW unpublished data

    Google Scholar 

  63. Varga J, Schulek-Toth F, Pati Nagy M Hungarian Patent 209132, April 29, 1992

    Google Scholar 

  64. Olley R (1986) Sci Progr Oxf 70:17

    CAS  Google Scholar 

  65. Trifonova D, Varga J, Vancso GJ (1998) Polym Bull 41:341

    Article  CAS  Google Scholar 

  66. Trifonova-van Haeringen D, Varga J, Ehrenstein GW, Vancso GJ (2000) J Polym Sci B Polym Phys 38:672

    Article  Google Scholar 

  67. Ikai A (1996) Surf Sci Rep 26:263–332

    Article  Google Scholar 

  68. Morris VJ, Wilde PJ (1997) Curr Opin Colloid Interface Sci 2:567–572

    Article  CAS  Google Scholar 

  69. Castner DG, Ratner BD (2002) Surf Sci 500:28–60

    Article  CAS  Google Scholar 

  70. Reich Z, Kapon R, Nevo R, Pilpel Y, Zmora S, Scolnik Y (2001) Biotechnol Adv 19:451–485

    Article  CAS  Google Scholar 

  71. Marti O, Amrein M (1993) STM and SFM in biology. Academic, London

    Google Scholar 

  72. Lindsay SM The scanning probe microscope in biology. In Bonnell D (ed) Scanning tunneling microscopy and related techniques. Wiley, New York

    Google Scholar 

  73. Jena B, Horber JK (2002) Atomic force microscopy in cell biology, methods in cell biology, vol 68. Academic, London

    Google Scholar 

  74. Morris J, Gunning AP, Kirby AR (1999) Atomic force microscopy for biologists. Imperial College Press, London

    Book  Google Scholar 

  75. Sun YC, Arakawa H, Osada T, Ikai A (2002) Appl Surf Sci 188:499–505

    Article  CAS  Google Scholar 

  76. Morigaki K, Baumgart T, Offenhäusser A, Knoll W (2001) Angew Chem Int Ed Engl 40:172–174

    Article  CAS  Google Scholar 

  77. Gustafsson J, Ciovica L, Peltonen J (2003) Polymer 44:661–670

    Article  CAS  Google Scholar 

  78. McIntire TM, Brant DA (1999) Int J Biol Macromol 26:303–310

    Article  CAS  Google Scholar 

  79. Burnham NA, Colton RJ, Pollock HM (1993) Nanotechnology 4:64

    Article  CAS  Google Scholar 

  80. Cappella B, Dietler G (1999) Surf Sci Rep 34:1

    Article  CAS  Google Scholar 

  81. García R, Pérez R (2002) Surf Sci Rep 47:197

    Article  Google Scholar 

  82. Drake B, Prater CB, Weisenhorn AL, Gould SAC, Albrecht TR, Quate CF, Cannell DS, Hansma HG, Hansma PK (1989) Science 243:1586–1589

    Article  CAS  Google Scholar 

  83. Weisenhorn AL, Hansma PK, Albrecht TR, Quate CF (1989) Appl Phys Lett 54:2651

    Article  Google Scholar 

  84. Weisenhorn AL, Maivald P, Butt H-J, Hansma PK (1992) Phys Rev B 45:11226

    Article  Google Scholar 

  85. Schönherr H, Morigaki K, Frank CW, Knoll W unpublished data

    Google Scholar 

  86. Owing to the unsymmetrical coating of the typically used cantilevers, these will bend as a result of different surface tensions [Raiteri R, Butt H-J (1995) J Phys Chem 99:15728–15732] or thermal expansion coefficients

    Article  CAS  Google Scholar 

  87. Schönherr H, Johnson JM, Frank CW, Boxer SG unpublished data

    Google Scholar 

  88. Dufrene YF, Barger WR, Green JBD, Lee GU (1997) Langmuir 13:4779–4784

    Article  CAS  Google Scholar 

  89. Schönherr H, Johnson JM, Frank CW, Boxer SG unpublished data

    Google Scholar 

  90. Hoh JH, Engel A (1993) Langmuir 9:3310–3312

    Article  CAS  Google Scholar 

  91. Van Noort SJT, Van der Werf KO, De Grooth BG, Van Hulst NF, Greve J (1997) Ultramicroscopy 69:117

    Article  CAS  Google Scholar 

  92. Johnson JM, Ha T, Chu S, Boxer SG (2002) Biophys J 83:3371–3379

    Article  CAS  Google Scholar 

  93. Schönherr H, Johnson JM, Lenz P, Frank CW, Boxer SG (2004) Langmuir 20:11600–11606

    Article  CAS  Google Scholar 

  94. Morigaki K, Schönherr H, Frank CW, Knoll W (2003) Langmuir 19:6994–7002

    Article  CAS  Google Scholar 

  95. Morigaki K, Schönherr H, Okazaki T (2007) Langmuir 23:12254–12260

    Article  CAS  Google Scholar 

  96. Knez M, Sumser MP, Bittner AM, Wege C, Jeske H, Hoffmann DMP, Kuhnke K, Kern K (2004) Langmuir 20:441–447

    Article  CAS  Google Scholar 

  97. Revol J-F, Bradford H, Giasson J, Marchessault RH, Gray DG (1992) Int J Biol Macromol 14:170–172

    Article  CAS  Google Scholar 

  98. Lyubchenko YL, Jacobs BL, Lindsay SM (1992) Nucleic Acids Res 20:3983–3986

    Article  CAS  Google Scholar 

  99. Baker AA, Helbert W, Sugiyama J, Miles MJ (1997) J Struct Biol 119:129–138

    Article  CAS  Google Scholar 

  100. Kirby AR, Gunning AP, Morris VJ (1995) Carbohydr Res 267:161–166

    Article  CAS  Google Scholar 

  101. http://www.ifr.ac.uk/spm/gallery_image.lasso?ID=39, copyright permission: Dr. Andrew Kirby, Institute of Food Research, Norwich Research Park, Colney, Norwich NR4 7UA, UK

  102. Habelitz S, Balooch M, Marshall SJ, Balooch G, Marshall GW Jr (2002) J Struct Biol 138:227–236

    Article  CAS  Google Scholar 

  103. Ratanabanangkoon P, Gast AP (2003) Langmuir 19:1794–1801

    Article  CAS  Google Scholar 

  104. Hemming SA, Bochkarev A, Darst SA, Kornberg RD, Ala P, Yang DSC, Edwards AM (1995) J Mol Biol 246:308–316

    Article  CAS  Google Scholar 

  105. Schönherr H, Ratanabanangkoon P, Frank CW, Gast AP unpublished data

    Google Scholar 

  106. Hu J, Wang M, Weier H-UG, Frantz P, Kolbe W, Ogletree DF, Salmeron M (1996) Langmuir 12:1697–1700

    Article  CAS  Google Scholar 

  107. Marsh LH, Coke M, Dettmar PW, Ewen RJ, Havler M, Nevell TG, Smart JD, Smith JR, Timmins B, Tsibouklis J, Alexander C (2002) J Biomed Mater Res 61:641–652

    Article  CAS  Google Scholar 

  108. Whangbo M-H, Magonov SN, Bengel H (1997) Probe Microsc 1:23

    CAS  Google Scholar 

  109. García R, Pérez R (2002) Surf Sci Rep 47:197

    Article  Google Scholar 

  110. Noy A, Sanders CH, Vezenov DV, Wong SS, Lieber CM (1998) Langmuir 14:1508

    Article  CAS  Google Scholar 

  111. Bar G, Thomann Y, Whangbo M-H (1998) Langmuir 14:1219

    Article  CAS  Google Scholar 

  112. Bar G, Thomann Y, Brandsch R, Cantow H-J, Whangbo M-H (1997) Langmuir 13:3807

    Article  CAS  Google Scholar 

  113. Bar G, Brandsch R, Whangbo M-H (1997) Langmuir 14:7343

    Article  Google Scholar 

  114. Leclère Ph, Lazzaroni R, Brédas JL, Yu JM, Dubois Ph, Jérôme R (1996) Langmuir 12:4317

    Article  Google Scholar 

  115. Pickering JP, Vancso GJ (1996) Polym Bull 40:549

    Article  Google Scholar 

  116. Lammertink RGH, Hempenius MA, Vancso GJ (2000) Langmuir 16:6245–6252

    Article  CAS  Google Scholar 

  117. Maivald P, Butt H-J, Gould SAC, Prater CB, Drake B, Gurley JA, Elings VB, Hansma PK (1991) Nanotechnology 2:103

    Article  Google Scholar 

  118. Chi L-F, Anders M, Fuchs H, Johnston RR, Ringsdorf H (1993) Science 259:213

    Article  CAS  Google Scholar 

  119. Chen JT, Thomas EL (1996) J Mater Sci 31:2531

    Article  CAS  Google Scholar 

  120. Gilmore IS, Seah MP, Johnstone JE (2003) Surf Interface Anal 35:888

    Article  CAS  Google Scholar 

  121. Mizes HA, Loh K-G, Miller RJD, Ahuja SK, Grabowski EF (1991) Appl Phys Lett 59:2901

    Article  CAS  Google Scholar 

  122. Frisbie CD, Rozsnyai LF, Noy A, Wrighton MS, Lieber CM (1994) Science 265:2071

    Article  CAS  Google Scholar 

  123. Schönherr H, Hruska Z, Vancso GJ (2000) Macromolecules 33:4532

    Article  CAS  Google Scholar 

  124. Krotil HU, Stifter T, Waschipky H, Weishaupt K, Hild S, Marti O (1999) Surf Interface Anal 27:336

    Article  CAS  Google Scholar 

  125. Krotil HU, Stifter T, Marti O (2000) Rev Sci Instrum 71:2765

    Article  CAS  Google Scholar 

  126. Guarini KW et al. (2003) International electron devices meeting technical digest. IEEE, Piscataway, NJ, pp 541–544

    Google Scholar 

  127. Rehse N, Knoll A, Konrad M, Magerle R, Krausch G (2001) Phys Rev Lett 87:035505

    Article  CAS  Google Scholar 

  128. Magerle R (2000) Phys Rev Lett 85:2749

    Article  CAS  Google Scholar 

  129. Knoll A, Horvat A, Lyakhova KS, Krausch G, Sevink GJA, Zvelindovsky AV, Magerle R (2002) Phys Rev Lett 89:035501

    Article  CAS  Google Scholar 

  130. Pickering JP, Vancso GJ (1998) Polym Bull 40:549–554

    Article  CAS  Google Scholar 

  131. Feng CL, Vancso GJ, Schönherr H (2005) Langmuir 21:2356–2363

    Article  CAS  Google Scholar 

  132. Timothy J Cavanaugh A, Russo P, Bruce E Nauman (1996) Chemtech 26(8):32–27

    Google Scholar 

  133. Chen C, Wang J, Woodcock SE, Chen Z (2002) Langmuir 18:1302–1309

    Article  CAS  Google Scholar 

  134. Raghavan D, VanLandingham M, Gu X, Nguyen T (2000) Langmuir 16:9448–9459

    Article  CAS  Google Scholar 

  135. Galuska AA, Poulter RR, McElrath KO (1997) Surf Interface Anal 25:418–429

    Article  CAS  Google Scholar 

  136. Zhang MQ, Rong MZ, Zeng HM, Schmitt S, Wetzel B, Friedrich K (2001) J Appl Polym Sci 80:2218–2227

    Article  CAS  Google Scholar 

  137. Allen MJ, Hud NV, Balooch M, Tench RJ, Siekhaus WJ, Balhron R (1992) Ultramicroscopy 42:1095

    Article  Google Scholar 

  138. Van Cleef M, Holt SA, Watson GS, Myhra S (1996) J Microsc Oxf 181:2

    Article  CAS  Google Scholar 

  139. Tabet MF, Urban FK (1997) J Vac Sci Technol B 15:800

    Article  CAS  Google Scholar 

  140. Nie HY, Walzak MJ, McIntyre NS (2002) Rev Sci Instrum 73:3831

    Article  CAS  Google Scholar 

  141. Trifonova D, Schönherr H, van der Does L, Janssen PJP, Noordermeer JWM, Vancso GJ (1999) Rubber Chem Technol 72:862–875

    Article  Google Scholar 

  142. Hild S, Rosa A, Marti O (1998) ACS Symp Ser 694:110–128

    Article  CAS  Google Scholar 

  143. Wang K, Wu J, Zeng H (2001) Composites Sci Technol 61:1529–1538

    Article  Google Scholar 

  144. Mäder E, Gao SL (2001) J Adhesion Sci Technol 15(9):1015–1037

    Article  Google Scholar 

  145. Varga J (1992) J Mater Sci 27:2557

    Article  CAS  Google Scholar 

  146. Olley R (1986) Sci Progr Oxf 70:17

    CAS  Google Scholar 

  147. Vancso GJ, Liu G, Karger-Kocsis J, Varga J (1997) Colloid Polym Sci 275:181

    Article  CAS  Google Scholar 

  148. Trifonova D, Drouillon P, Ghanem A, Vancso GJ (1997) J Appl Polym Sci 66:515–523

    Article  CAS  Google Scholar 

  149. Drummond KM, Shanks RA, Cser F (2002) Appl Polym Sci 83:777–784

    Article  CAS  Google Scholar 

  150. Bartczak Z, Argon AS, Cohen RE, Kowalewski T (1999) Polymer 40:2367–2380

    Article  CAS  Google Scholar 

  151. Opdahl A, Somorjai GA (2001) J Polym Sci B Polym Phys 39:2263–2274

    Article  CAS  Google Scholar 

  152. Chang AC, Tau L, Hiltner A, Baer E (2002) Polymer 43:4923–4933

    Article  CAS  Google Scholar 

  153. Olley RH, Bassett DC (1982) Polymer 23:1707–1710

    Article  CAS  Google Scholar 

  154. Schönherr H, Hruska Z, Vancso GJ (1998) Macromol 31:3679–3685

    Article  Google Scholar 

  155. Smith PF, Chun I, Liu G, Dimitrievich D, Rasburn J, Vancso GJ (1996) Polym Eng Sci 36:2129

    Article  CAS  Google Scholar 

  156. Huy TA, Adhikari R, Michler GH, Radusch H-J (2002) Macromol Symp 184:153–173

    Article  CAS  Google Scholar 

  157. Garcia R, Perez R (2002) Surf Sci Rep 47:197

    Article  CAS  Google Scholar 

  158. Cohen Y, Albalak RJ, Dair BJ, Capel MS, Thomas EL (2000) Macromolecules 33:6502

    Article  CAS  Google Scholar 

  159. Pakula T, Saijo K, Kawai H, Hashimoto T (1985) Macromolecules 18:1294

    Article  CAS  Google Scholar 

  160. Huy TA, Adhikari R, Michler G (2003) H Polymer 44:1247–1257

    Article  CAS  Google Scholar 

  161. Vancso GJ, Allston TD, Chun I, Johansson LS, Liu G, Smith PF (1996) Int J Polym Anal Charact 3:89

    Article  CAS  Google Scholar 

  162. Strobel M, Jones V, Lyons CS, Ulsh M, Kushner MJ, Dorai R, Branch MC (2003) Plasm Polym 8:61–95

    Article  CAS  Google Scholar 

  163. Moreno A, Baer E (1983) In Hiltner A (ed) Structure-property relationships of polymeric solids. Plenum, New York

    Google Scholar 

  164. Zaporojtchenko V, Strunskus T, Behnke K, Bechtolsheim C, Thran A, Faupel F (2000) Microelectron Eng 50:465–471

    Article  CAS  Google Scholar 

  165. Shahidzadeh N, Arefi-Khonsari F, Chehimi MM, Amouroux J (1996) Surf Sci 888:352–354

    Google Scholar 

  166. Hruska Z, Lepot X (2000) J Fluorine Chem 105:87

    Article  CAS  Google Scholar 

  167. Volkmann T, Widdecke H (1989) Kunststoffe 79:743

    CAS  Google Scholar 

  168. Kranz G, Lüschen R, Gesang T, Schlett V, Hennemann OD, Stohrer WD (1994) Int J Adhes Adhes 14:243

    Article  CAS  Google Scholar 

  169. Adcock JL, Inoue S, Lagow RJ (1978) J Am Chem Soc 100:1948

    Article  CAS  Google Scholar 

  170. Shinohara H, Iwasaki M, Tsujimura S, Watanabe K, Okazaki S (1992) J Polym Sci A 10:2129

    Google Scholar 

  171. Song J, Gunst U, Arlinghaus HF, Vancso G (2007) J Appl Surf Sci 253:9489–9499

    Article  CAS  Google Scholar 

  172. Lepizzera S, Scheer M, Fond C, Pith T, Lambla M, Lang J (1997) Macromolecules 30:7953–7957

    Article  CAS  Google Scholar 

  173. Sirijarukul S, Balanzat E, Vasina EN, Dejardin PJ (2007) Membr Sci 296:185–194

    Article  CAS  Google Scholar 

  174. Iwata H, Hirata I, Ikada Y (1998) Macromolecules 31:3671–3678

    Article  CAS  Google Scholar 

  175. Bobji MS, Bhushan B (2001) J Mater Res 16:844–855

    Article  CAS  Google Scholar 

  176. Devlin CLH, Glab SD, Chiang S, Russell TP (2001) J Appl Polym Sci 80:1470–1477

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Holger Schönherr .

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schönherr, H., Vancso, G.J. (2010). Visualization of Macromolecules and Polymer Morphology. In: Scanning Force Microscopy of Polymers. Springer Laboratory. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01231-0_3

Download citation

Publish with us

Policies and ethics