Advertisement

Permissive Hypercapnia

  • Patrick Hassett
  • John G. Laffey
  • Brian P. KavanaghEmail author
Chapter
  • 4k Downloads

Abstract

The potential for high stretch mechanical ventilation to cause ventilator induced lung injury (VILI) and worsen the severity of ARDS is clear. Protective ventilatory strategies that reduce tidal and minute ventilation improve outcome in children with severely injured lungs. The high levels of PaCO2 arising from restrictive ventilation are well tolerated clinically and have been termed ‘Permissive Hypercapnia’. The benefits of ventilatory strategies incorporating permissive hypercapnia are assumed to be a result of reduced lung stretch. However hypercapnia itself has the potential to exert a multitude of beneficial – and harmful – effects, and should not be thought of as a mere ‘bystander’.

This chapter will focus on ventilator strategies involving permissive hypercapnia in neonates and infants with acute respiratory failure. Using evidence gathered from laboratory studies, we will examine the biological effects of hypercapnia on organ systems and the modulating effects that hypercapnia has on systemic and lung injury models. The evidence that hypercapnia may exert direct effects on the severity of lung injury will be considered. The role of permissive hypercapnia in a variety of clinical settings of relevance to neonatal and paediatric practice will then be discussed. Finally the risks and benefits of permissive hypercapnia will be considered in specific clinical situations.

Keywords

Lung Injury Pulmonary Vascular Resistance Hypoplastic Left Heart Syndrome Congenital Diaphragmatic Hernia Ventilator Induce Lung Injury 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Amato MB, Barbas CS, Medeiros DM, Schettino G, Lorenzi Filho G, Kairalla RA et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152(6 Pt 1):1835–1846PubMedGoogle Scholar
  2. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338(6):347–354PubMedGoogle Scholar
  3. Anyaegbunam A, Fleischer A, Whitty J, Brustman L, Randolph G, Langer O (1991) Association between umbilical artery cord pH, five-minute Apgar scores and neonatal outcome. Gynecol Obstet Invest 32(4):220–223PubMedGoogle Scholar
  4. Arellano R, Jiang MT, O’Brien W, Hossain I, Boylen P, Demajo W et al (1999) Acute graded hypercapnia increases collateral coronary blood flow in a swine model of chronic coronary artery obstruction. Crit Care Med 27(12):2729–2734PubMedGoogle Scholar
  5. Bagolan P, Casaccia G, Crescenzi F, Nahom A, Trucchi A, Giorlandino C (2004) Impact of a current treatment protocol on outcome of high-risk congenital diaphragmatic hernia. J Pediatr Surg 39(3):313–318; discussion 13–18PubMedGoogle Scholar
  6. Balakrishnan I, Crook P, Morris R, Gillespie SH (2000) Early predictors of mortality in pneumococcal bacteraemia. J Infect 40(3):256–261PubMedGoogle Scholar
  7. Barth A, Bauer R, Gedrange T, Walter B, Klinger W, Zwiener U (1998) Influence of hypoxia and hypoxia/hypercapnia upon brain and blood peroxidative and glutathione status in normal weight and growth- restricted newborn piglets. Exp Toxicol Pathol 50(4–6):402–410PubMedGoogle Scholar
  8. Billert H, Drobnik L, Makowski A (2003) The influence of acute hypercapnia on the quantity and oxidative metabolism of bronchoalveolar lavage-derived leukocytes in the mechanically ventilated rabbit. Med Sci Monit 9(1):BR8–BR15PubMedGoogle Scholar
  9. Bohn D (2002) Congenital diaphragmatic hernia. Am J Respir Crit Care Med 166(7):911–915PubMedGoogle Scholar
  10. Bonventre JV, Cheung JY (1985) Effects of metabolic acidosis on viability of cells exposed to anoxia. Am J Physiol 249:C149–C159PubMedGoogle Scholar
  11. Bradley SM, Simsic JM, Mulvihill DM (2003) Hypoventilation improves oxygenation after bidirectional superior cavopulmonary connection. J Thorac Cardiovasc Surg 126(4):1033–1039PubMedGoogle Scholar
  12. Broccard AF, Hotchkiss JR, Vannay C, Markert M, Sauty A, Feihl F et al (2001) Protective effects of hypercapnic acidosis on ventilator-induced lung injury. Am J Respir Crit Care Med 164:802–806PubMedGoogle Scholar
  13. Caples SM, Rasmussen DL, Lee WY, Wolfert MZ, Hubmayr RD (2009) Impact of buffering hypercapnic acidosis on cell wounding in ventilator-injured rat lungs. Am J Physiol Lung Cell Mol Physiol 296(1):L140–L144PubMedCentralPubMedGoogle Scholar
  14. Cardenas VJ, Zwischenberger JB, Tao W, Nguyen PD, Schroeder T, Traber LD et al (1996) Correction of blood pH attenuates changes in hemodynamics and organ blood flow during permissive hypercapnia. Crit Care Med 24:827–834PubMedGoogle Scholar
  15. Carlo WA, Stark AR, Wright LL, Tyson JE, Papile LA, Shankaran S et al (2002) Minimal ventilation to prevent bronchopulmonary dysplasia in extremely-low-birth-weight infants. J Pediatr 141(3):370–374PubMedGoogle Scholar
  16. Coakley RJ, Taggart C, Greene C, McElvaney NG, O’Neill SJ (2002) Ambient pCO2 modulates intracellular pH, intracellular oxidant generation, and interleukin-8 secretion in human neutrophils. J Leukoc Biol 71(4):603–610PubMedGoogle Scholar
  17. Conrad SA, Green R, Scott LK (2007) Near-fatal pediatric asthma managed with pumpless arteriovenous carbon dioxide removal. Crit Care Med 35(11):2624–2629PubMedGoogle Scholar
  18. Costello J, Higgins B, Contreras M, Chonghaile MN, Hassett P, O’Toole D et al (2009) Hypercapnic acidosis attenuates shock and lung injury in early and prolonged systemic sepsis. Crit Care Med 37(8):2412–2420PubMedGoogle Scholar
  19. Crosby A, Talbot NP, Balanos GM, Donoghue S, Fatemian M, Robbins PA (2003) Respiratory effects in humans of a 5-day elevation of end-tidal PCO2 by 8 Torr. J Appl Physiol 95(5):1947–1954PubMedGoogle Scholar
  20. Cullen DJ, Eger EI 2nd (1974) Cardiovascular effects of carbon dioxide in man. Anesthesiology 41(4):345–349PubMedGoogle Scholar
  21. Dahlem P, van Aalderen WM, Hamaker ME, Dijkgraaf MG, Bos AP (2003) Incidence and short-term outcome of acute lung injury in mechanically ventilated children. Eur Respir J 22(6):980–985PubMedGoogle Scholar
  22. Darioli R, Perret C (1984) Mechanical controlled hypoventilation in status asthmaticus. Am Rev Respir Dis 129(3):385–387PubMedGoogle Scholar
  23. Demaurex N, Downey GP, Waddell TK, Grinstein S (1996) Intracellular pH regulation during spreading of human neutrophils. J Cell Biol 133(6):1391–1402PubMedGoogle Scholar
  24. Doerr CH, Gajic O, Berrios JC, Caples S, Abdel M, Lymp JF et al (2005) Hypercapnic acidosis impairs plasma membrane wound resealing in ventilator-injured lungs. Am J Respir Crit Care Med 171(12):1371–1377PubMedCentralPubMedGoogle Scholar
  25. Domino KB, Swenson ER, Polissar NL, Lu Y, Eisenstein BL, Hlastala MP (1993) Effect of inspired CO2 on ventilation and perfusion heterogeneity in hyperventilated dogs. J Appl Physiol 75(3):1306–1314PubMedGoogle Scholar
  26. Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157(1):294–323PubMedGoogle Scholar
  27. Drummond WH, Gegory GA, Heymann MA, Phibbs RA (1981) The independent effects of hyperventilation, tolazoline, and dopamine on infants with persistent pulmonary hypertension. J Pediatr 98:603–611PubMedGoogle Scholar
  28. Feihl F, Eckert P, Brimioulle S, Jacobs O, Schaller MD, Melot C et al (2000) Permissive hypercapnia impairs pulmonary gas exchange in the acute respiratory distress syndrome. Am J Respir Crit Care Med 162(1):209–215PubMedGoogle Scholar
  29. Ferrara B, Johnson DE, Chang PN, Thompson TR (1984) Efficacy and neurologic outcome of profound hypocapneic alkalosis for the treatment of persistent pulmonary hypertension in infancy. J Pediatr 105(3):457–461PubMedGoogle Scholar
  30. Friedman G, Berlot G, Kahn RJ, Vincent JL (1995) Combined measurements of blood lactate concentrations and gastric intramucosal pH in patients with severe sepsis. Crit Care Med 23(7):1184–1193PubMedGoogle Scholar
  31. Gleason CA, Short BL, Jones MD Jr (1989) Cerebral blood flow and metabolism during and after prolonged hypocapnia in newborn lambs. J Pediatr 115(2):309–314PubMedGoogle Scholar
  32. Goldsmith DJ, Forni LG, Hilton PJ (1997) Bicarbonate therapy and intracellular acidosis. Clin Sci 93:593–598PubMedGoogle Scholar
  33. Gores GJ, Nieminen AL, Wray BE, Herman B, LeMasters JJ (1989) Intracellular pH during “chemical hypoxia” in cultured rat hepatocytes: protection by intracellular acidosis against the onset of early cell death. J Clin Invest 83:386–396PubMedCentralPubMedGoogle Scholar
  34. Greisen G, Munck H, Lou H (1987) Severe hypocarbia in preterm infants and neurodevelopmental deficit. Acta Paediatr Scand 76(3):401–404PubMedGoogle Scholar
  35. Hackam DJ, Grinstein S, Nathens A, Watson WG, Marshall JC, Rotstein OD (1996) Exudative neutrophils show impaired pH regulation compared with circulating neutrophils. Arch Surg 131(12):1296–1301PubMedGoogle Scholar
  36. Hare GM, Kavanagh BP, Mazer CD, Hum KM, Kim SY, Coackley C et al (2003) Hypercapnia increases cerebral tissue oxygen tension in anesthetized rats. Can J Anaesth 50(10):1061–1068PubMedGoogle Scholar
  37. Higgins BD, Costello J, Contreras M, Hassett P, O’Toole D, Laffey JG (2009) Differential effects of hypercapnia versus hypercapnic acidosis in shock and lung injury induced by systemic sepsis. Anesthesiology 111(6):1317–1326PubMedGoogle Scholar
  38. Holmes JM, Zhang S, Leske DA, Lanier WL (1998) Carbon dioxide-induced retinopathy in the neonatal rat. Curr Eye Res 17(6):608–616PubMedGoogle Scholar
  39. Hoskote A, Li J, Hickey C, Erickson S, Van Arsdell G, Stephens D et al (2004) The effects of carbon dioxide on oxygenation and systemic, cerebral, and pulmonary vascular hemodynamics after the bidirectional superior cavopulmonary anastomosis. J Am Coll Cardiol 44(7):1501–1509PubMedGoogle Scholar
  40. Hotter G, Palacios L, Sola A (2004) Low O2 and high CO2 in LLC-PK1 cells culture mimics renal ischemia-induced apoptosis. Lab Invest 84(2):213–220PubMedGoogle Scholar
  41. Jorgensen EO, Holm S (1999) The course of circulatory and cerebral recovery after circulatory arrest: influence of pre-arrest, arrest and post-arrest factors. Resuscitation 42(3):173–182PubMedGoogle Scholar
  42. Kaiser JR, Gauss CH, Williams DK (2005) The effects of hypercapnia on cerebral autoregulation in ventilated very low birth weight infants. Pediatr Res 58(5):931–935PubMedCentralPubMedGoogle Scholar
  43. Kantores C, McNamara PJ, Teixeira L, Engelberts D, Murthy P, Kavanagh BP et al (2006) Therapeutic hypercapnia prevents chronic hypoxia-induced pulmonary hypertension in the newborn rat. Am J Physiol Lung Cell Mol Physiol 291(5):L912–L922PubMedGoogle Scholar
  44. Keenan RJ, Todd TR, DeMajo W, Slutsky AS (1990) Effects of hypercarbia on arterial and alveolar oxygen tensions in a model of gram-negative pneumonia. J Appl Physiol 68:1820–1825Google Scholar
  45. Kitakaze M, Weisfeldt ML, Marban E (1988) Acidosis during early reperfusion prevents myocardial stunning in perfused ferret hearts. J Clin Invest 82:920–927PubMedCentralPubMedGoogle Scholar
  46. Kitakaze M, Takashima S, Funaya H, Minamino T, Node K, Shinozaki Y et al (1997) Temporary acidosis during reperfusion limits myocardial infarct size in dogs. Am J Physiol 272(5 Pt 2):H2071–H2078PubMedGoogle Scholar
  47. Kregenow DA, Rubenfeld GD, Hudson LD, Swenson ER (2006) Hypercapnic acidosis and mortality in acute lung injury. Crit Care Med 34(1):1–7PubMedGoogle Scholar
  48. Laffey JG, Kavanagh BP (1999) Carbon dioxide and the critically ill–too little of a good thing? Lancet 354(9186):1283–1286PubMedGoogle Scholar
  49. Laffey JG, Kavanagh BP (2002) Hypocapnia. N Engl J Med 347(1):43–53PubMedGoogle Scholar
  50. Laffey JG, Engelberts D, Kavanagh BP (2000a) Buffering hypercapnic acidosis worsens acute lung injury. Am J Respir Crit Care Med 161:141–146PubMedGoogle Scholar
  51. Laffey JG, Engelberts D, Kavanagh BP (2000b) Injurious effects of hypocapnic alkalosis in the isolated lung. Am J Respir Crit Care Med 162(2):399–405PubMedGoogle Scholar
  52. Laffey JG, Tanaka M, Engelberts D, Luo X, Yuan S, Tanswell AK et al (2000c) Therapeutic hypercapnia reduces pulmonary and systemic injury following in vivo lung reperfusion. Am J Respir Crit Care Med 162(6):2287–2294PubMedGoogle Scholar
  53. Laffey JG, Jankov RP, Engelberts D, Tanswell AK, Post M, Lindsay T et al (2003a) Effects of therapeutic hypercapnia on mesenteric ischemia-reperfusion injury. Am J Respir Crit Care Med 168(11):1383–1390PubMedGoogle Scholar
  54. Laffey JG, Engelberts D, Duggan M, Veldhuizen R, Lewis JF, Kavanagh BP (2003b) Carbon dioxide attenuates pulmonary impairment resulting from hyperventilation. Crit Care Med 31(11):2634–2640PubMedGoogle Scholar
  55. Laffey JG, O’Croinin D, McLoughlin P, Kavanagh BP (2004a) Permissive hypercapnia – role in protective lung ventilatory strategies. Intensive Care Med 30(3):347–356PubMedGoogle Scholar
  56. Laffey JG, Honan D, Hopkins N, Hyvelin JM, Boylan JF, McLoughlin P (2004b) Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am J Respir Crit Care Med 169(1):46–56PubMedGoogle Scholar
  57. Lang JD, Chumley P, Eiserich JP, Estevez A, Bamberg T, Adhami A et al (2000) Hypercapnia induces injury to alveolar epithelial cells via a nitric oxide-dependent pathway. Am J Physiol Lung Cell Mol Physiol 279(5):L994–L1002PubMedGoogle Scholar
  58. Lang JD, Figueroa M, Sanders KD, Aslan M, Liu Y, Chumley P et al (2005) Hypercapnia via reduced rate and tidal volume contributes to lipopolysaccharide-induced lung injury. Am J Respir Crit Care Med 171(2):147–157PubMedGoogle Scholar
  59. Leavitt AM, Watchko JF, Bennett FC, Folsom RC (1987) Neurodevelopmental outcome following persistent pulmonary hypertension of the neonate. J Perinatol 7(4):288–291PubMedGoogle Scholar
  60. Leblebicioglu B, Lim JS, Cario AC, Beck FM, Walters JD (1996) pH changes observed in the inflamed gingival crevice modulate human polymorphonuclear leukocyte activation in vitro. J Periodontol 67(5):472–477PubMedGoogle Scholar
  61. Lee KJ, Hernandez G, Gordon JB (2003) Hypercapnic acidosis and compensated hypercapnia in control and pulmonary hypertensive piglets. Pediatr Pulmonol 36(2):94–101PubMedGoogle Scholar
  62. Licht DJ, Wang J, Silvestre DW, Nicolson SC, Montenegro LM, Wernovsky G et al (2004) Preoperative cerebral blood flow is diminished in neonates with severe congenital heart defects. J Thorac Cardiovasc Surg 128(6):841–849PubMedGoogle Scholar
  63. Mariani G, Cifuentes J, Carlo WA (1999) Randomized trial of permissive hypercapnia in preterm infants. Pediatrics 104(5 Pt 1):1082–1088PubMedGoogle Scholar
  64. Marron MJ, Crisafi MA, Driscoll JM Jr, Wung JT, Driscoll YT, Fay TH et al (1992) Hearing and neurodevelopmental outcome in survivors of persistent pulmonary hypertension of the newborn. Pediatrics 90(3):392–396PubMedGoogle Scholar
  65. Mathur NB, Singh A, Sharma VK, Satyanarayana L (1996) Evaluation of risk factors for fatal neonatal sepsis. Indian Pediatr 33(10):817–822PubMedGoogle Scholar
  66. Moylan FM, Walker AM, Kramer SS, Todres ID, Shannon DC (1978) The relationship of bronchopulmonary dysplasia to the occurrence of alveolar rupture during positive pressure ventilation. Crit Care Med 6(3):140–142PubMedGoogle Scholar
  67. Ni Chonghaile M, Higgins BD, Costello JF, Laffey JG (2008a) Hypercapnic acidosis attenuates severe acute bacterial pneumonia-induced lung injury by a neutrophil-independent mechanism. Crit Care Med 36(12):3135–3144PubMedGoogle Scholar
  68. Ni Chonghaile M, Higgins BD, Costello J, Laffey JG (2008b) Hypercapnic acidosis attenuates lung injury induced by established bacterial pneumonia. Anesthesiology 109(5):837–848Google Scholar
  69. Nichol AD, O’ Croinin D, Howell K, Naughton F, O’Brien S, Boylan JF et al (2009) Infection induced lung injury is worsened following renal buffering of hypercapnic acidosis. Crit Care Med 37(11):2953–2961PubMedGoogle Scholar
  70. Nomura F, Aoki M, Forbess JM, Mayer JE (1994) Effects of hypercarbic acidotic reperfusion on recovery of myocardial function after cardioplegic ischemia in neonatal lambs. Circulation 90:321–327Google Scholar
  71. O’Croinin DF, Hopkins NO, Moore MM, Boylan JF, McLoughlin P, Laffey JG (2005) Hypercapnic acidosis does not modulate the severity of bacterial pneumonia-induced lung injury. Crit Care Med 33(11):2606–2612PubMedGoogle Scholar
  72. O’Croinin DF, Nichol AD, Hopkins N, Boylan J, O’Brien S, O’Connor C et al (2008) Sustained hypercapnic acidosis during pulmonary infection increases bacterial load and worsens lung injury. Crit Care Med 36(7):2128–2135PubMedGoogle Scholar
  73. O’Toole D, Hassett P, Contreras M, Higgins B, McKeown ST, McAuley DF et al (2009) Hypercapnic acidosis attenuates pulmonary epithelial wound repair by an NF-{kappa}B dependent mechanism. Thorax 64(11):976–982PubMedGoogle Scholar
  74. Preckel B, Schlack W, Obal D, Barthel H, Ebel D, Grunert S et al (1998) Effect of acidotic blood reperfusion on reperfusion injury after coronary artery occlusion in the dog heart. J Cardiovasc Pharmacol 31(2):179–186PubMedGoogle Scholar
  75. Rai S, Engelberts D, Laffey JG, Frevert C, Kajikawa O, Martin TR et al (2004) Therapeutic hypercapnia is not protective in the in vivo surfactant-depleted rabbit lung. Pediatr Res 55(1):42–49PubMedGoogle Scholar
  76. Ramamoorthy C, Tabbutt S, Kurth CD, Steven JM, Montenegro LM, Durning S et al (2002) Effects of inspired hypoxic and hypercapnic gas mixtures on cerebral oxygen saturation in neonates with univentricular heart defects. Anesthesiology 96(2):283–288PubMedGoogle Scholar
  77. Ratnaraj J, Kabon B, Talcott MR, Sessler DI, Kurz A (2004) Supplemental oxygen and carbon dioxide each increase subcutaneous and intestinal intramural oxygenation. Anesth Analg 99(1):207–211PubMedCentralPubMedGoogle Scholar
  78. Rehncrona S, Hauge HN, Siesjo BK (1989) Enhancement of iron-catalyzed free radical formation by acidosis in brain homogenates: differences in effect by lactic acid and CO2. J Cereb Blood Flow Metab 9(1):65–70PubMedGoogle Scholar
  79. Rodarte JR, Hyatt RE (1973) Effect of acute exposure to CO2 on lung mechanics in normal man. Respir Physiol 17(2):135–145PubMedGoogle Scholar
  80. Shapiro JI, Whalen M, Kucera R, Kindig N, Filley G, Chan L (1989) Brain pH responses to sodium bicarbonate and Carbicarb during systemic acidosis. Am J Physiol 256(5 Pt 2):H1316–H1321PubMedGoogle Scholar
  81. Shibata K, Cregg N, Engelberts D, Takeuchi A, Fedorko L, Kavanagh BP (1998) Hypercapnic acidosis may attenuate acute lung injury by inhibition of endogenous xanthine oxidase. Am J Respir Crit Care Med 158:1578–1584PubMedGoogle Scholar
  82. Shiota S, Okada T, Naitoh H, Ochi R, Fukuchi Y (2004) Hypoxia and hypercapnia affect contractile and histological properties of rat diaphragm and hind limb muscles. Pathophysiology 11(1):23–30PubMedGoogle Scholar
  83. Sinclair SE, Kregenow DA, Lamm WJ, Starr IR, Chi EY, Hlastala MP (2002) Hypercapnic acidosis is protective in an in vivo model of ventilator-induced lung injury. Am J Respir Crit Care Med 166(3):403–408PubMedGoogle Scholar
  84. Skouteli HN, Kuban KC, Leviton A, Brown ER, Krishnamoorthy KS, Pagano M et al (1988) Arterial blood gas derangements associated with death and intracranial hemorrhage in premature babies. J Perinatol 8(4):336–341PubMedGoogle Scholar
  85. Suljaga-Pechtel K, Goldberg E, Strickon P, Berger M, Skovron ML (1984) Cardiopulmonary resuscitation in a hospitalized population: prospective study of factors associated with outcome. Resuscitation 12(2):77–95PubMedGoogle Scholar
  86. Sun JH, Filley GF, Hord K, Kindig NB, Bartle EJ (1987) Carbicarb: an effective substitute for NaHCO3 for the treatment of acidosis. Surgery 102(5):835–839PubMedGoogle Scholar
  87. Swenson ER (2004) Therapeutic hypercapnic acidosis: pushing the envelope. Am J Respir Crit Care Med 169(1):8–9PubMedGoogle Scholar
  88. Swenson EW, Finley TN, Guzman SV (1961) Unilateral hypoventilation in man during temporary occlusion of one pulmonary artery. J Clin Invest 40:828–835PubMedCentralPubMedGoogle Scholar
  89. Swenson ER, Robertson HT, Hlastala MP (1994) Effects of inspired carbon dioxide on ventilation-perfusion matching in normoxia, hypoxia, and hyperoxia. Am J Respir Crit Care Med 149(6):1563–1569PubMedGoogle Scholar
  90. Swenson ER, Graham MM, Hlastala MP (1995) Acetazolamide slows VA/Q matching after changes in regional blood flow. J Appl Physiol 78(4):1312–1318PubMedGoogle Scholar
  91. Szymonowicz W, Yu VY, Wilson FE (1984) Antecedents of periventricular haemorrhage in infants weighing 1250 g or less at birth. Arch Dis Child 59(1):13–17PubMedCentralPubMedGoogle Scholar
  92. Tabbutt S, Ramamoorthy C, Montenegro LM, Durning SM, Kurth CD, Steven JM et al (2001) Impact of inspired gas mixtures on preoperative infants with hypoplastic left heart syndrome during controlled ventilation. Circulation 104(12 Suppl 1):I159–I164PubMedGoogle Scholar
  93. Takeshita K, Suzuki Y, Nishio K, Takeuchi O, Toda K, Kudo H et al (2003) Hypercapnic acidosis attenuates endotoxin-induced nuclear factor-[kappa]B activation. Am J Respir Cell Mol Biol 29(1):124–132PubMedGoogle Scholar
  94. Tang W, Weil MH, Gazmuri RJ, Bisera J, Rackow EC (1991) Reversible impairment of myocardial contractility due to hypercarbic acidosis in the isolated perfused rat heart. Crit Care Med 19:218–224PubMedGoogle Scholar
  95. Tasker RC, Peters MJ (1998) Combined lung injury, meningitis and cerebral edema: how permissive can hypercapnia be? Intensive Care Med 24(6):616–619PubMedGoogle Scholar
  96. Thome UH, Carroll W, Wu TJ, Johnson RB, Roane C, Young D et al (2006) Outcome of extremely preterm infants randomized at birth to different PaCO2 targets during the first seven days of life. Biol Neonate 90(4):218–225PubMedGoogle Scholar
  97. van den Elshout FJ, van Herwaarden CL, Folgering HT (1991) Effects of hypercapnia and hypocapnia on respiratory resistance in normal and asthmatic subjects. Thorax 46(1):28–32PubMedCentralPubMedGoogle Scholar
  98. Vannucci RC, Towfighi J, Heitjan DF, Brucklacher RM (1995) Carbon dioxide protects the perinatal brain from hypoxic-ischemic damage: an experimental study in the immature rat. Pediatrics 95:868–874PubMedGoogle Scholar
  99. Vannucci RC, Brucklacher RM, Vannucci SJ (1997) Effect of carbon dioxide on cerebral metabolism during hypoxia-ischemia in the immature rat. Pediatr Res 42(1):24–29PubMedGoogle Scholar
  100. Vannucci RC, Towfighi J, Brucklacher RM, Vannucci SJ (2001) Effect of extreme hypercapnia on hypoxic-ischemic brain damage in the immature rat. Pediatr Res 49(6):799–803PubMedGoogle Scholar
  101. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network (2000) N Engl J Med 342(18):1301–1308Google Scholar
  102. von Planta I, Weil MH, von Planta M, Gazmuri RJ, Duggal C (1991) Hypercarbic acidosis reduces cardiac resuscitability. Crit Care Med 19(9):1177–1182Google Scholar
  103. Wallin LA, Rosenfeld CR, Laptook AR, Maravilla AM, Strand C, Campbell N et al (1990) Neonatal intracranial hemorrhage: II. Risk factor analysis in an inborn population. Early Hum Dev 23(2):129–137PubMedGoogle Scholar
  104. West MA, Baker J, Bellingham J (1996) Kinetics of decreased LPS-stimulated cytokine release by macrophages exposed to CO2. J Surg Res 63(1):269–274PubMedGoogle Scholar
  105. Wildeboer-Venema F (1980) The influences of temperature and humidity upon the isolated surfactant film of the dog. Respir Physiol 39(1):63–71PubMedGoogle Scholar
  106. Wung JT, James LS, Kilchevsky E, James E (1985) Management of infants with severe respiratory failure and persistence of the fetal circulation, without hyperventilation. Pediatrics 76:488–494PubMedGoogle Scholar
  107. Zhu G, Shaffer TH, Wolfson MR (2004) Continuous tracheal gas insufflation during partial liquid ventilation in juvenile rabbits with acute lung injury. J Appl Physiol 96(4):1415–1424PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Patrick Hassett
    • 1
    • 2
  • John G. Laffey
    • 3
  • Brian P. Kavanagh
    • 4
    Email author
  1. 1.Lung Biology GroupNational Centre of Biomedical Engineering Sciences, National University of Ireland, GalwayGalwayIreland
  2. 2.Department of Anaesthesia and Intensive Care MedicineUniversity College HospitalGalwayIreland
  3. 3.Department of Anesthesia, Keenan Research Centre for Biomedical ScienceSt. Michael’s Hospital, University of TorontoTorontoCanada
  4. 4.Departments of Critical Care Medicine and Anesthesia and the Program in Physiology and Experimental Medicine and the Program in Physiology and Experimental MedicineHospital for Sick Children, University of TorontoTorontoCanada

Personalised recommendations