Skip to main content

Indications for Nonconventional Ventilation Modes

  • Chapter
  • First Online:
Book cover Pediatric and Neonatal Mechanical Ventilation

Abstract

Critical care physicians facing patients that require invasive mechanical ventilation are confronted with the questions what type of ventilator and what ventilator strategy is most appropriate for this particular patient. Mechanical ventilation is initiated to bridge a gap to recovery or to supply chronic support. Failure of mechanical ventilation can arise through inability to deliver adequate gas exchange or through resulting complications, like pneumothorax. Although mechanical ventilation is meant to support respiratory function, mechanical ventilation can also result in pulmonary damage and contribute to increased risk of mortality. Therefore, the selection of the ventilator type and strategy should be guided by the capacity to achieve adequate gas exchange and, in the meanwhile, to prevent lung injury.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Al-balkhi A, Klonin H, Marinaki K, Southall DP, Thomas DA, Jones P, Samuels MP (2005) Review of treatment of bronchiolitis related apnoea in two centres. Arch Dis Child 90(3):288–291

    Google Scholar 

  • Albelda SM, Hansen-Flaschen JH, Taylor E, Lanken PN, Wollman H (1985) Evaluation of high-frequency jet ventilation in patients with bronchopleural fistulas by quantitation of the airleak. Anesthesiology 63:551–554

    CAS  PubMed  Google Scholar 

  • Alexander G, Gerhardt T, Bancalari E (1979) Hyaline membrane disease. Am J Dis Child 133:1156–1159

    CAS  PubMed  Google Scholar 

  • Arnold JH, Hanson JH, Toro-Figuero LO, Gutierrez J, Berens RJ, Anglin DL (1994) Prospective, randomized comparison of high-frequency oscillatory ventilation and conventional mechanical ventilation in pediatric respiratory failure. Crit Care Med 22(10):1530–1539

    CAS  PubMed  Google Scholar 

  • Ashbaugh DG, Bigelow DB, Petty TL, Levine BE (1967) Acute respiratory distress in adults. Lancet 2(7511):319–323

    CAS  PubMed  Google Scholar 

  • Baumgart S, Hirschl RB, Butler SZ et al (1992) Diagnosis-related criteria in the consideration of extracorporeal membrane oxygenation in neonates previously treated with high frequency jet ventilation. Pediatrics 89:491

    CAS  PubMed  Google Scholar 

  • Ben JN, Mnif K, Khaldi A, Bouziri A, Belhadj S, Hamdi A (2006a) High-frequency oscillatory ventilation in term and near-term infants with acute respiratory failure: early rescue use. Am J Perinatol 23(7):403–411

    Google Scholar 

  • Ben JN, Khaldi A, Mnif K, Bouziri A, Belhadj S, Hamdi A et al (2006b) High-frequency oscillatory ventilation in pediatric patients with acute respiratory failure. Pediatr Crit Care Med 7(4):362–367

    Google Scholar 

  • Bennett SS, Graffagnino C, Borel CO, James ML (2007) Use of high frequency oscillatory ventilation (HFOV) in neurocritical care patients. Neurocrit Care 7(3):221–226

    PubMed Central  PubMed  Google Scholar 

  • Berner ME, Hanquinet S, Rimensberger PC (2008) High frequency oscillatory ventilation for respiratory failure due to RSV bronchiolitis. Intensive Care Med 34(9):1698–1702

    PubMed  Google Scholar 

  • Bhuta T, Henderson-Smart DJ (1998) Elective high frequency jet ventilation versus conventional ventilation for respiratory distress syndrome in preterm infants. Cochrane Database Syst Rev 2:CD000328

    Google Scholar 

  • Bhuta T, Henderson-Smart DJ (2000) Rescue high frequency oscillatory ventilation versus conventional ventilation for pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev (2):CD000438

    Google Scholar 

  • Bidani A, Tzouanakis AE, Cardenas VJ Jr, Zwischenberger JB (1994) Permissive hypercapnia in acute respiratory failure. JAMA 272(12):957–962

    CAS  PubMed  Google Scholar 

  • Bishop MJ, Benson MS, Sato P, Pierson DJ (1987) Comparison of high-frequency jet ventilation with conventional mechanical ventilation for bronchopleural fistula. Anesth Analg 66:833–838

    CAS  PubMed  Google Scholar 

  • Bjorklund LJ, Ingimarsson J, Curstedt T, John J, Robertson B, Werner O et al (1997) Manual ventilation with a few large breaths at birth compromises the therapeutic effect of subsequent surfactant replacement in immature lambs. Pediatr Res 42(3):348–355

    CAS  PubMed  Google Scholar 

  • Bollen CW, Uiterwaal CS, van Vught AJ (2003) Cumulative metaanalysis of high-frequency versus conventional ventilation in premature neonates. Am J Respir Crit Care Med 168(10):1150–1155

    PubMed  Google Scholar 

  • Bollen CW, van Well GT, Sherry T, Beale RJ, Shah S, Findlay G et al (2005) High frequency oscillatory ventilation compared with conventional mechanical ventilation in adult respiratory distress syndrome: a randomized controlled trial [ISRCTN24242669]. Crit Care 9(4):R430–R439

    PubMed Central  PubMed  Google Scholar 

  • Bollen CW, Uiterwaal CS, van Vught AJ (2006) Systematic review of determinants of mortality in high frequency oscillatory ventilation in acute respiratory distress syndrome. Crit Care 10(1):R34

    PubMed Central  PubMed  Google Scholar 

  • Bollen CW, Uiterwaal CS, van Vught AJ (2007) Meta-regression analysis of high-frequency ventilation vs conventional ventilation in infant respiratory distress syndrome. Intensive Care Med 33(4):680–688

    PubMed Central  PubMed  Google Scholar 

  • Bollen CW, van Vught AJ, Uiterwaal CS (2008) High-frequency ventilation is/is not the optimal physiological approach to ventilate ARDS patients. J Appl Physiol 104(4):1238

    PubMed  Google Scholar 

  • Borelli M, Benini A, Denkevitz T, Acciaro C, Foti G, Pesenti A (1998) Effects of continuous negative extrathoracic pressure versus positive end expiratory pressure in acute lung injury patients. Crit Care Med 26:1025–1031

    CAS  PubMed  Google Scholar 

  • Boros SJ, Mammel MC, Coleman JM et al (1985) Neonatal high-frequency jet ventilation: four years’ experience. Pediatrics 75:657

    CAS  PubMed  Google Scholar 

  • Boros SJ, Mammel MC, Coleman JM, Horcher P, Gordon MJ, Bing DR (1989) Comparison of high-frequency oscillatory ventilation and high-frequency jet ventilation in cats with normal lungs. Pediatr Pulmonol 7(1):35–41

    CAS  PubMed  Google Scholar 

  • Briggs S, Pappachan J, Argent J, McGill N, Marsh M (2003) Lemierre disease in the pediatric intensive care unit, clinical course, and the use of high-frequency oscillatory ventilation. Pediatr Crit Care Med 4(1):107–110

    PubMed  Google Scholar 

  • Briggs S, Goettler CE, Schenarts PJ, Newell MA, Sagraves SG, Bard MR et al (2009) High-frequency oscillatory ventilation as a rescue therapy for adult trauma patients. Am J Crit Care 18(2):144–148

    PubMed  Google Scholar 

  • Bryan AC, Cox PN (1999) History of high frequency oscillation. Schweiz Med Wochenschr 129(43):1613–1616

    CAS  PubMed  Google Scholar 

  • Bryan AC, Froese AB (1991) Reflections on the HIFI trial. Pediatrics 87(4):565–567

    CAS  PubMed  Google Scholar 

  • Campion A, Huvenne H, Leteurtre S, Noizet O, Binoche A, Diependaele JF et al (2006) Non-invasive ventilation in infants with severe infection presumably due to respiratory syncytial virus: feasibility and failure criteria. Arch Pediatr 13(11):1404–1409

    CAS  PubMed  Google Scholar 

  • Carlo WA, Beoglos A, Chatburn RL, Walsh MC, Martin RJ (1989) High-frequency jet ventilation in neonatal pulmonary hypertension. Am J Dis Child 143(2):233–238

    CAS  PubMed  Google Scholar 

  • Carlo WA, Siner B, Chatburn RL et al (1990) Early randomized intervention with high-frequency jet ventilation in respiratory distress syndrome. J Pediatr 117:765–770

    CAS  PubMed  Google Scholar 

  • Carlon GC, Griffin J, Ray C Jr, Groeger JS, Patrick K (1983) High frequency jet ventilation in experimental airway disruption. Crit Care Med 11:353–355

    CAS  PubMed  Google Scholar 

  • Carlton DP, Cummings JJ, Scheerer RG, Poulain FR, Bland RD (1990) Lung overexpansion increases pulmonary microvascular protein permeability in young lambs. J Appl Physiol 69(2):577–583

    CAS  PubMed  Google Scholar 

  • Cartotto R (2009) Use of high frequency oscillatory ventilation in inhalation injury. J Burn Care Res 30(1):178–181

    PubMed  Google Scholar 

  • Cartotto R, Walia G, Ellis S, Fowler R (2009) Oscillation after inhalation: high frequency oscillatory ventilation in burn patients with the acute respiratory distress syndrome and co-existing smoke inhalation injury. J Burn Care Res 30(1):119–127

    PubMed  Google Scholar 

  • Carvalho CR, Barbas CS, Medeiros DM, Magaldi RB, Lorenzi FG, Kairalla RA et al (1997) Temporal hemodynamic effects of permissive hypercapnia associated with ideal PEEP in ARDS. Am J Respir Crit Care Med 156(5):1458–1466

    CAS  PubMed  Google Scholar 

  • Chan KP, Stewart TE (2005) Clinical use of high-frequency oscillatory ventilation in adult patients with acute respiratory distress syndrome. Crit Care Med 33(3 Suppl):S170–S174

    PubMed  Google Scholar 

  • Chan KP, Stewart TE, Mehta S (2007) High-frequency oscillatory ventilation for adult patients with ARDS. Chest 131(6):1907–1916

    PubMed  Google Scholar 

  • Chaturvedi RK, Zidulka A, Goldberg P, de Varennes B, Lachapelle K (2008) Use of negative extrathoracic pressure to improve haemodynamics after cardiac surgery. Ann Thorac Surg 85:1355–1360

    PubMed  Google Scholar 

  • Chevalier JY, Couprie C et al (1993) Venovenous single lumen cannula extracorporeal lung support in neonates. A five year experience. Asaio J 39(3):M654–M658

    CAS  PubMed  Google Scholar 

  • Chiaranda M, Rubini A, Fiore G, Giron G, Carlon GC (1984) Hemodynamic effects of continuous positive-pressure ventilation and high-frequency jet ventilation with positive end-expiratory pressure in normal dogs. Crit Care Med 12:750–754

    CAS  PubMed  Google Scholar 

  • Cioffi WG, de Lemos RA, Coalson JJ, Gerstmann DA, Pruitt BA Jr (1993) Decreased pulmonary damage in primates with inhalation injury treated with high-frequency ventilation. Ann Surg 218(3):328–335

    CAS  PubMed Central  PubMed  Google Scholar 

  • Clark RH, Gerstmann DR, Null DM, Yoder BA, Cornish JD, Glasier CM, Ackerman NB, Bell RE, Delemos RA (1986) Pulmonary interstitial emphysema treated by high-frequency oscillatory ventilation. Crit Care Med 14:926–930

    CAS  PubMed  Google Scholar 

  • Clark RH, Yoder BA, Sell MS (1994) Prospective, randomized comparison of high-frequency oscillation and conventional ventilation in candidates for extracorporeal membrane oxygenation. J Pediatr 124(3):447–454

    CAS  PubMed  Google Scholar 

  • Clark RH, Slutsky AS, Gerstmann DR (2000) Lung protective strategies of ventilation in the neonate: what are they? Pediatrics 105(1 Pt 1):112–114

    CAS  PubMed  Google Scholar 

  • Coates EW, Klinepeter ME, O’Shea TM (2008) Neonatal pulmonary hypertension treated with inhaled nitric oxide and high-frequency ventilation. J Perinatol 28(10):675–679

    CAS  PubMed  Google Scholar 

  • Cools F, Henderson-Smart DJ, Offringa M, Askie LM (2009) Elective high frequency oscillatory ventilation versus conventional ventilation for acute pulmonary dysfunction in preterm infants. Cochrane Database Syst Rev (3):CD000104

    Google Scholar 

  • Courtney SE, Spohn WA, Weber KR, Miles DS, Gotshall RW, Wong RC (1989) Cardiopulmonary effects of high frequency positive pressure ventilation vs. jet ventilation in respiratory failure. Am Rev Respir Dis 139(2):504–512

    Google Scholar 

  • Courtney SE, Durand DJ, Asselin JM, Hudak ML, Aschner JL, Shoemaker CT (2002) High-frequency oscillatory ventilation versus conventional mechanical ventilation for very-low-birth-weight infants. N Engl J Med 347(9):643–652

    PubMed  Google Scholar 

  • Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M et al (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164(1):131–140

    CAS  PubMed  Google Scholar 

  • Cullen S, Shore D, Redington A (1995) Characterization of right ventricular diastolic performance after complete repair of tetralogy of Fallot. Circulation 91:1782–1798

    CAS  PubMed  Google Scholar 

  • Cvetnic WG, Cunningham MD, Gluck L (1990) Reintroduction of continuous negative pressure ventilation in neonates: two years experience. Pediatr Pulmonol 8:245–253

    CAS  PubMed  Google Scholar 

  • Dahlem P, van Aalderen WM, Hamaker ME, Dijkgraaf MG, Bos AP (2003) Incidence and short-term outcome of acute lung injury in mechanically ventilated children. Eur Respir J 22(6):980–985

    CAS  PubMed  Google Scholar 

  • Danan C, Dassieu G et al (1996) Efficacy of dead-space washout in mechanically ventilated premature newborns. Am J Respir Crit Care Med 153(5):1571–1576

    CAS  PubMed  Google Scholar 

  • Danan C, Durrmeyer X et al (2008) A randomized trial of delayed extubation for the reduction of reintubation in extremely preterm infants. Pediatr Pulmonol 43(2):117–124

    PubMed  Google Scholar 

  • Dassieu G, Brochard L et al (1998) Continuous tracheal gas insufflation enables a volume reduction strategy in hyaline membrane disease: technical aspects and clinical results. Intensive Care Med 24(10):1076–1082

    CAS  PubMed  Google Scholar 

  • Dassieu G, Brochard L et al (2000) Continuous tracheal gas insufflation in preterm infants with hyaline membrane disease. A prospective randomized trial. Am J Respir Crit Care Med 162(3 Pt 1):826–831

    CAS  PubMed  Google Scholar 

  • Datin-Dorriere V, Walter-Nicolet E, Rousseau V, Taupin P, Benachi A, Parat S et al (2008) Experience in the management of eighty-two newborns with congenital diaphragmatic hernia treated with high-frequency oscillatory ventilation and delayed surgery without the use of extracorporeal membrane oxygenation. J Intensive Care Med 23(2):128–135

    PubMed  Google Scholar 

  • David M, Karmrodt J, Weiler N, Scholz A, Markstaller K, Eberle B (2005) High-frequency oscillatory ventilation in adults with traumatic brain injury and acute respiratory distress syndrome. Acta Anaesthesiol Scand 49(2):209–214

    CAS  PubMed  Google Scholar 

  • Davis JM, Richter SE, Kendig JW, Notter RH (1992) High-frequency jet ventilation and surfactant treatment of newborns with severe respiratory failure. Pediatr Pulmonol 13:108–112

    CAS  PubMed  Google Scholar 

  • Derdak S, Mehta S, Stewart TE, Smith T, Rogers M, Buchman TG et al (2002) High-frequency oscillatory ventilation for acute respiratory distress syndrome in adults: a randomized, controlled trial. Am J Respir Crit Care Med 166(6):801–808

    PubMed  Google Scholar 

  • Donn SM, Zak LK, Bozynski ME et al (1990) Use of high-frequency jet ventilation in the management of congenital tracheoesophageal fistula associated with respiratory distress syndrome. J Pediatr Surg 25:1219–1221

    CAS  PubMed  Google Scholar 

  • Dreyfuss D, Saumon G (1992) Barotrauma is volutrauma, but which volume is the one responsible? Intensive Care Med 18(3):139–141

    CAS  PubMed  Google Scholar 

  • Dreyfuss D, Saumon G (1998) Ventilator-induced lung injury: lessons from experimental studies. Am J Respir Crit Care Med 157(1):294–323

    CAS  PubMed  Google Scholar 

  • Dreyfuss D, Basset G, Soler P, Saumon G (1985) Intermittent positive-pressure hyperventilation with high inflation pressures produces pulmonary microvascular injury in rats. Am Rev Respir Dis 132(4):880–884

    CAS  PubMed  Google Scholar 

  • Dreyfuss D, Soler P, Saumon G (1992) Spontaneous resolution of pulmonary edema caused by short periods of cyclic overinflation. J Appl Physiol 72(6):2081–2089

    CAS  PubMed  Google Scholar 

  • Duval EL, van Vught AJ (2000) Status asthmaticus treated by high-frequency oscillatory ventilation. Pediatr Pulmonol 30(4):350–353

    CAS  PubMed  Google Scholar 

  • Duval EL, Leroy PL, Gemke RJ, van Vught AJ (1999) High-frequency oscillatory ventilation in RSV bronchiolitis patients. Respir Med 93(6):435–440

    CAS  PubMed  Google Scholar 

  • Duval EL, Markhorst DG, Gemke RJ, van Vught AJ (2000) High-frequency oscillatory ventilation in pediatric patients. Neth J Med 56(5):177–185

    CAS  PubMed  Google Scholar 

  • Egreteau L, Pauchard JY, Semama DS, Matis J, Liska A, Romeo B et al (2001) Chronic oxygen dependency in infants born at less than 32 weeks’ gestation: incidence and risk factors. Pediatrics 108(2):E26

    CAS  PubMed  Google Scholar 

  • Engle WA, Yoder MC et al (1997) Controlled prospective randomized comparison of HFJV and CV in neonates with respiratory failure and persistent pulmonary hypertension. J Perinatol 17:3–9

    CAS  PubMed  Google Scholar 

  • Faranoff AA, Choon C, Sosa R, Crumrine RS, Klaus M (1973) Controlled trial of continuous negative external pressure in the treatment of severe respiratory distress syndrome. J Pediatr 82:921–928

    Google Scholar 

  • Feihl F, Perret C (1994) Permissive hypercapnia. How permissive should we be? Am J Respir Crit Care Med 150(6 Pt 1):1722–1737

    CAS  PubMed  Google Scholar 

  • Ferguson ND, Cook DJ, Guyatt GH, Mehta S, Hand L, Austin P, Zhou Q, Matte A, Walter SD, Lamontagne F, Granton JT, Arabi YM, Arroliga AC, Stewart TE, Slutsky AS, Meade MO; OSCILLATE Trial Investigators; Canadian Critical Care Trials Group (2013) High-frequency oscillation in early acute respiratory distress syndrome. N Engl J Med 368(9):795–805

    Google Scholar 

  • Ferguson ND, Slutsky AS (2008) Point: high-frequency ventilation is the optimal physiological approach to ventilate ARDS patients. J Appl Physiol 104(4):1230–1231

    PubMed  Google Scholar 

  • Fessler HE, Derdak S, Ferguson ND, Hager DN, Kacmarek RM, Thompson BT et al (2007) A protocol for high-frequency oscillatory ventilation in adults: results from a roundtable discussion. Crit Care Med 35(7):1649–1654

    PubMed  Google Scholar 

  • Fort P, Farmer C, Westerman J, Johannigman J, Beninati W, Dolan S et al (1997) High-frequency oscillatory ventilation for adult respiratory distress syndrome – a pilot study. Crit Care Med 25(6):937–947

    CAS  PubMed  Google Scholar 

  • Friedlich P, Subramanian N, Sebald M, Noori S, Seri I (2003) Use of high-frequency jet ventilation in neonates with hypoxemia refractory to high-frequency oscillatory ventilation. J Matern Fetal Neonatal Med 13:398–402

    CAS  PubMed  Google Scholar 

  • Froese AB (1997) High-frequency oscillatory ventilation for adult respiratory distress syndrome: let’s get it right this time! Crit Care Med 25(6):906–908

    CAS  PubMed  Google Scholar 

  • Funk DJ, Lujan E, Moretti EW, Davies J, Young CC, Patel MB et al (2008) A brief report: the use of high-frequency oscillatory ventilation for severe pulmonary contusion. J Trauma 65(2):390–395

    PubMed  Google Scholar 

  • Galvin I, Krishnamoorthy R, Saad RS (2004) Management of advanced ARDS complicated by bilateral pneumothoraces with high-frequency oscillatory ventilation in an adult. Br J Anaesth 93(3):454–456

    CAS  PubMed  Google Scholar 

  • Gattinoni L, Vagginelli F, Chiumello D, Taccone P, Carlesso E (2003) Physiologic rationale for ventilator setting in acute lung injury/acute respiratory distress syndrome patients. Crit Care Med 31(4 Suppl):S300–S304

    PubMed  Google Scholar 

  • Gattinoni L, Carlesso E, Valenza F, Chiumello D, Caspani ML (2004) Acute respiratory distress syndrome, the critical care paradigm: what we learned and what we forgot. Curr Opin Crit Care 10(4):272–278

    PubMed  Google Scholar 

  • Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M et al (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354(17):1775–1786

    CAS  PubMed  Google Scholar 

  • Gerstmann DR, Wood K, Miller A, Steffen M, Ogden B, Stoddard RA et al (2001) Childhood outcome after early high-frequency oscillatory ventilation for neonatal respiratory distress syndrome. Pediatrics 108(3):617–623

    CAS  PubMed  Google Scholar 

  • Goldberg L, Marmon L, Keszler M (1992) High-frequency jet ventilation decreases flow through tracheo-esophageal fistula. Crit Care Med 20:547–550

    CAS  PubMed  Google Scholar 

  • Gonzalez F, Harris T, Black P et al (1987) Decreased gas flow through pneumothoraces in neonates receiving high-frequency jet versus conventional ventilation. J Pediatr 110:464–466

    CAS  PubMed  Google Scholar 

  • Goutorbe PP, Asencio YY, Bordes JJ, Montcriol AA, Prunet BB, Meaudre EE (2008) Protective ventilation in ARDS: as soon as possible. An immediate use of HFOV. Cases J 1(1):124

    PubMed Central  PubMed  Google Scholar 

  • Greenough A, Dimitriou G, Prendergast M, Milner AD (2008) Synchronized mechanical ventilation for respiratory support in newborn infants. Cochrane Database Syst Rev (1):CD000456

    Google Scholar 

  • Greenspan JS, Wolfson MR, Rubenstein SD, Shaffer TH (1989) Liquid ventilation of preterm baby. Lancet 2:1095

    CAS  PubMed  Google Scholar 

  • Greenspan JS, Wolfson MR, Rubenstein SD, Shaffer TH (1990) Liquid ventilation of human preterm neonates. J Pediatr 117:106–111

    CAS  PubMed  Google Scholar 

  • Greenspan JS, Davis DA, Russo P, Antunes MJ, Spitzer AR, Wolfson MR (1994) High frequency jet ventilation: intraoperative application in infants. Pediatr Pulmonol 17:155–160

    CAS  PubMed  Google Scholar 

  • Gross GW, Greenspan JS, Fox WW, Rubenstein SD, Wolfson MR, Shaffer TH (1995) Use of liquid ventilation with perflubron during extracorporeal membrane oxygenation: chest radiographic appearances. Radiology 194:717–720

    CAS  PubMed  Google Scholar 

  • Guervilly C, Roch A, Papazian L (2013) High-frequency oscillation for ARDS. N Engl J Med 368(23):2233

    PubMed  Google Scholar 

  • Ha DV, Johnson D (2004) High frequency oscillatory ventilation in the management of a high output bronchopleural fistula: a case report. Can J Anaesth 51(1):78–83

    PubMed  Google Scholar 

  • Hager DN, Fessler HE, Kaczka DW, Shanholtz CB, Fuld MK, Simon BA et al (2007) Tidal volume delivery during high-frequency oscillatory ventilation in adults with acute respiratory distress syndrome. Crit Care Med 35(6):1522–1529

    PubMed  Google Scholar 

  • Harris TR, Chistensen RD (1984) High-frequency jet ventilation treatment of pulmonary interstitial emphysema. Pediatr Res 19:326A

    Google Scholar 

  • Harris KS, Berry AM, Mitchell PA, Sanyal SK (1978) Continuous chest wall pressure therapy in the management of severe respiratory insufficiency. Heart Lung 7:1000–1005

    CAS  PubMed  Google Scholar 

  • Hartmann H, Jaward MH, Noyes J, Samuels MP, Southall DP (1994a) Negative extrathoracic pressure ventilation in central hypoventilation syndrome. Arch Dis Child 70:418–423

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hartman H, Noyes JP, Wright T, et al (1994b).Continuous negative pressure ventilation in infants with bronchiolitis. Eur Respir J S18:379

    Google Scholar 

  • Henderson J (2005) Respiratory support of infants with bronchiolitis related apnoea: is there a role for negative pressure? Arch Dis Child 90:224–225

    CAS  PubMed Central  PubMed  Google Scholar 

  • Henderson-Smart DJ, De Paoli AG, Clark RH, Bhuta T (2009) High frequency oscillatory ventilation versus conventional ventilation for infants with severe pulmonary dysfunction born at or near term. Cochrane Database Syst Rev (3):CD002974

    Google Scholar 

  • Henning R (1986) Effects of the positive end-expiratory pressure on the right ventricle. J Appl Physiol 61:819–826

    CAS  PubMed  Google Scholar 

  • Hernandez LA, Peevy KJ, Moise AA, Parker JC (1989) Chest wall restriction limits high airway pressure-induced lung injury in young rabbits. J Appl Physiol 66(5):2364–2368

    CAS  PubMed  Google Scholar 

  • Hickling KG, Walsh J, Henderson S, Jackson R (1994) Low mortality rate in adult respiratory distress syndrome using low-volume, pressure-limited ventilation with permissive hypercapnia: a prospective study. Crit Care Med 22(10):1568–1578

    CAS  PubMed  Google Scholar 

  • HiFO Study Group (1993) Randomized study of high-frequency oscillatory ventilation in infants with severe respiratory distress syndrome. J Pediatr 122:609–619

    Google Scholar 

  • Higgins J, Estetter B, Holland D, Smith B, Derdak S (2005) High-frequency oscillatory ventilation in adults: respiratory therapy issues. Crit Care Med 33(3 Suppl):S196–S203

    PubMed  Google Scholar 

  • High-frequency oscillatory ventilation compared with conventional mechanical ventilation in the treatment of respiratory failure in preterm infants. The HIFI Study Group (1989) N Engl J Med 320(2):88–93

    Google Scholar 

  • Hirschl RB, Conrad S, Kaiser R et al (1998) Partial liquid ventilation in adult patients with ARDS: a multicenter phase I-II trial. Adult PLV study group. Ann Surg 228:692–700

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hirschl RB, Philip WF, Glick L et al (2003) A prospective, randomized pilot trial of perfluorocarbon-induced lung growth in newborns with congenital diaphragmatic hernia. J Pediatr Surg 38:283–289; discussion 283–289

    PubMed  Google Scholar 

  • Hoskote A et al (2004) Oxygenation and systemic, cerebral and pulmonary vascular haemodynamics after the bidirectional superior cavopulmonary shunt. J Am Coll Cardiol 44:1501–1509

    PubMed  Google Scholar 

  • Hulskamp G, Pillow JJ, Dinger J, Stocks J (2006) Lung function tests in neonates and infants with chronic lung disease of infancy: functional residual capacity. Pediatr Pulmonol 41(1):1–22

    PubMed  Google Scholar 

  • Jackson M, Kinnear W, King M, Shneerson J (1993) The effect of five years of nocturnal cuirass-assisted ventilation in chest wall disease. Eur Respir J 6:630–635

    CAS  PubMed  Google Scholar 

  • Jackson MP, Philp B, Murdoch LJ, Powell BW (2002) High frequency oscillatory ventilation successfully used to treat a severe paediatric inhalation injury. Burns 28(5):509–511

    CAS  PubMed  Google Scholar 

  • Jobe AH, Ikegami M (2000) Lung development and function in preterm infants in the surfactant treatment era. Annu Rev Physiol 62:825–846

    CAS  PubMed  Google Scholar 

  • Johnson AH, Peacock JL, Greenough A, Marlow N, Limb ES, Marston L et al (2002) High-frequency oscillatory ventilation for the prevention of chronic lung disease of prematurity. N Engl J Med 347(9):633–642

    PubMed  Google Scholar 

  • Jones PA, Andrews PJ, Easton VJ, Minns RA (2003) Traumatic brain injury in childhood: intensive care time series data and outcome. Br J Neurosurg 17(1):29–39

    CAS  PubMed  Google Scholar 

  • Kahn DJ, Courtney SE, Steele AM, Habib RH (2007) Unpredictability of delivered bubble nasal continuous positive airway pressure, role of bias flow magnitude and nares prong air leaks. Pediatr Res 62:342–347

    Google Scholar 

  • Kao KC, Tsai YH, Wu YK, Huang CT, Shih MJ, Huang CC (2006) High frequency oscillatory ventilation for surgical patients with acute respiratory distress syndrome. J Trauma 61(4):837–843

    PubMed  Google Scholar 

  • Kawano T, Mori S, Cybulsky M, Burger R, Ballin A, Cutz E et al (1987) Effect of granulocyte depletion in a ventilated surfactant-depleted lung. J Appl Physiol 62(1):27–33

    CAS  PubMed  Google Scholar 

  • Keszler M, Abubakar K (2011) In: Goldsmith J, Karotkin E (eds) Assisted ventilation of the neonate, 5th edn. Elsevier Publishing, Inc, St. Louis

    Google Scholar 

  • Keszler M, Jennings LL (1997) High-frequency jet ventilation in infants with decreased chest wall compliance. Pediatr Res 41:257A

    Google Scholar 

  • Keszler M, Klein R, McClellan L et al (1982) Effects of conventional and high-frequency ventilation on lung parenchyma. Crit Care Med 10:514–516

    CAS  PubMed  Google Scholar 

  • Keszler M, Molina B, Siva Subramanian KN (1986) Combined high-frequency jet ventilation in a meconium aspiration model. Crit Care Med 14:34–38

    CAS  PubMed  Google Scholar 

  • Keszler M, Klappenbach RS, Reardon E (1988) Lung pathology after high-frequency jet ventilation combined with slow intermittent mandatory ventilation in a canine model of meconium aspiration. Pediatr Pulmonol 4:144–149

    CAS  PubMed  Google Scholar 

  • Keszler M, Donn SM, Bucciarelli RL et al (1991) Multi-center controlled trial comparing high-frequency jet ventilation and conventional mechanical ventilation in newborn infants with pulmonary interstitial emphysema. J Pediatr 119:85–93

    CAS  PubMed  Google Scholar 

  • Keszler M, Goldberg LA, Wallace A (1993) High frequency jet ventilation in subjects with low chest wall compliance. Pediatr Res 33:331A

    Google Scholar 

  • Keszler M, Modanlou HD, Brudno DS et al (1997) Multi-center controlled clinical trial of high-frequency jet ventilation in preterm infants with uncomplicated respiratory distress syndrome. Pediatrics 100:593–599

    CAS  PubMed  Google Scholar 

  • Kim KJ, Crandall ED (1982) Effects of lung inflation on alveolar epithelial solute and water transport properties. J Appl Physiol 52(6):1498–1505

    CAS  PubMed  Google Scholar 

  • Kinsella JP, Truog WE, Walsh WF, Goldberg RN, Bancalari E, Mayock DE et al (1997) Randomized, multicenter trial of inhaled nitric oxide and high-frequency oscillatory ventilation in severe, persistent pulmonary hypertension of the newborn. J Pediatr 131(1 Pt 1):55–62

    CAS  PubMed  Google Scholar 

  • Kneyber MC, Plotz FB, Sibarani-Ponsen RD, Markhorst DG (2005) High-frequency oscillatory ventilation (HFOV) facilitates CO2 elimination in small airway disease: the open airway concept. Respir Med 99(11):1459–1461

    PubMed  Google Scholar 

  • Kocis KC, Meliones JN, Dekeon MK, Callow LB, Lupinetti FM, Bove EL (1992) High-frequency jet ventilation for respiratory failure after congenital heart surgery. Circulation 86:II127–II132

    CAS  PubMed  Google Scholar 

  • Kolton M, Cattran CB, Kent G, Volgyesi G, Froese AB, Bryan AC (1982) Oxygenation during high-frequency ventilation compared with conventional mechanical ventilation in two models of lung injury. Anesth Analg 61(4):323–332

    CAS  PubMed  Google Scholar 

  • Kuluz MA, Smith PB, Mears SP, Benjamin JR, Tracy ET, Williford WL, Goldberg RN, Rice HE, Cotten CM (2010) Preliminary observations of the use of high-frequency jet ventilation as rescue therapy in infants with congenital diaphragmatic hernia. J Pediatr Surg 45(4):698–702

    PubMed Central  PubMed  Google Scholar 

  • Kuo PH, Wu HD, Yu CJ, Yang SC, Lai YL, Yang PC (1996) Efficacy of tracheal gas insufflation in acute respiratory distress syndrome with permissive hypercapnia. Am J Respir Crit Care Med 154(3 Pt 1):612–616

    CAS  PubMed  Google Scholar 

  • Lachmann B (1992) Open up the lung and keep the lung open. Intensive Care Med 18(6):319–321

    CAS  PubMed  Google Scholar 

  • Laffey JG, Honan D, Hopkins N, Hyvelin JM, Boylan JF, McLoughlin P (2004) Hypercapnic acidosis attenuates endotoxin-induced acute lung injury. Am J Respir Crit Care Med 169(1):46–56

    PubMed  Google Scholar 

  • Lanzenberger-Schragl E, Donner A, Grasl MC, Zimpfer M, Aloy A (2000) Superimposed high-frequency jet ventilation for laryngeal and tracheal surgery. Arch Otolaryngol Head Neck Surg 126:40–44

    CAS  PubMed  Google Scholar 

  • Larrar S, Essouri S, Durand P, Chevret L, Haas V, Chabernaud JL et al (2006) Effects of nasal continuous positive airway pressure ventilation in infants with severe acute bronchiolitis. Arch Pediatr 13(11):1397–1403

    CAS  PubMed  Google Scholar 

  • Leach CL, Holm B, Morin FC et al (1995) Partial liquid ventilation in premature lambs with respiratory distress syndrome: efficacy and compatibility with exogenous surfactant. J Pediatr 126:412–420

    CAS  PubMed  Google Scholar 

  • Leclerc F, Scalfaro P, Noizet O, Thumerelle C, Dorkenoo A, Fourier C (2001) Mechanical ventilatory support in infants with respiratory syncytial virus infection. Pediatr Crit Care Med 2(3):197–204

    PubMed  Google Scholar 

  • Lemons JA, Bauer CR, Oh W, Korones SB, Papile LA, Stoll BJ et al (2001) Very low birth weight outcomes of the National Institute of Child health and human development neonatal research network, January 1995 through December 1996. NICHD Neonatal Research Network. Pediatrics 107(1):E1

    CAS  PubMed  Google Scholar 

  • Liaudet L (2013) High-frequency oscillation for ARDS. N Engl J Med 368(23):2231

    PubMed  Google Scholar 

  • Lo TY, Jones PA, Freeman JA, McFadzean J, Minns RA (2008) The role of high frequency oscillatory ventilation in the management of children with severe traumatic brain injury and concomitant lung pathology. Pediatr Crit Care Med 9(5):e38–e42

    PubMed  Google Scholar 

  • Lockhat D, Langleben A, Zidulka D (1992) Haemodynamic differences between continual positive and two types of negative pressure ventilation. Am Rev Respir Dis 146:677–680

    CAS  PubMed  Google Scholar 

  • Lucking SE, Fields AI, Mahfood S, Kassir MM, Midgley FM (1986) High-frequency ventilation versus conventional ventilation in dogs with right ventricular dysfunction. Crit Care Med 14(9):798–801

    CAS  PubMed  Google Scholar 

  • Mainali ES, Greene C, Rozycki HJ, Gutcher GR (2007) Safety and efficacy of high-frequency jet ventilation in neonatal transport. J Perinatol 27:609–613

    CAS  PubMed  Google Scholar 

  • Malhotra A, Drazen JM (2013) High-frequency oscillatory ventilation on shaky ground. N Engl J Med 368(9):863–865

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mammel MC, Gordon MJ, Connett JE, Boros SJ (1983) Comparison of high-frequency jet ventilation and conventional mechanical ventilation in a meconium aspiration model. J Pediatr 103:630–634

    CAS  PubMed  Google Scholar 

  • Markus-Rodden MM, Bojko T, Hauck LC (2008) Traumatic tracheal laceration in a pediatric patient medically managed with high-frequency oscillatory ventilation. Pediatr Emerg Care 24(4):236–237

    PubMed  Google Scholar 

  • Marlow N, Greenough A, Peacock JL, Marston L, Limb ES, Johnson AH et al (2006) Randomised trial of high frequency oscillatory ventilation or conventional ventilation in babies of gestational age 28 weeks or less: respiratory and neurological outcomes at 2 years. Arch Dis Child Fetal Neonatal Ed 91(5):F320–F326

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mausser G, Friedrich G, Schwarz G (2007) Airway management and anesthesia in neonates, infants and children during endolaryngotracheal surgery. Paediatr Anaesth 17:942–947

    PubMed  Google Scholar 

  • McCulloch PR, Forkert PG, Froese AB (1988) Lung volume maintenance prevents lung injury during high frequency oscillatory ventilation in surfactant-deficient rabbits. Am Rev Respir Dis 137(5):1185–1192

    CAS  PubMed  Google Scholar 

  • McGinley J, Corcoran T, Canny G, O’Hare B (2001) A case of pneumomediastinum in paediatric ARDS: to oscillate or not? Paediatr Anaesth 11(3):366–369

    CAS  PubMed  Google Scholar 

  • Medbo S, Finne PH, Hansen TW (1997) Respiratory syncytial virus pneumonia ventilated with high-frequency oscillatory ventilation. Acta Paediatr 86(7):766–768

    CAS  PubMed  Google Scholar 

  • Mehta S, Lapinsky SE, Hallett DC, Merker D, Groll RJ, Cooper AB et al (2001) Prospective trial of high-frequency oscillation in adults with acute respiratory distress syndrome. Crit Care Med 29(7):1360–1369

    CAS  PubMed  Google Scholar 

  • Meliones JN, Bove EL, Dekeon MK et al (1991) High-frequency jet ventilation improves cardiac function after the Fontan procedure. Circulation 84(suppl III):364–368

    Google Scholar 

  • Meredith KS, de Lemos RA, Coalson JJ, King RJ, Gerstmann DR, Kumar R et al (1989) Role of lung injury in the pathogenesis of hyaline membrane disease in premature baboons. J Appl Physiol 66(5):2150–2158

    CAS  PubMed  Google Scholar 

  • Migliazza L, Bellan C, Alberti D, Auriemma A, Burgio G, Locatelli G et al (2007) Retrospective study of 111 cases of congenital diaphragmatic hernia treated with early high-frequency oscillatory ventilation and presurgical stabilization. J Pediatr Surg 42(9):1526–1532

    PubMed  Google Scholar 

  • Morley CJ, Davis GP, Doyle LW et al (2008) Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 358:700–708

    CAS  PubMed  Google Scholar 

  • Morris AH, Elliott G (1985) Adult respiratory distress syndrome: successful support with continuous negative extrathoracic pressure. Crit Care Med 13:989–990

    CAS  PubMed  Google Scholar 

  • Muscedere JG, Mullen JB, Gan K, Slutsky AS (1994) Tidal ventilation at low airway pressures can augment lung injury. Am J Respir Crit Care Med 149(5):1327–1334

    CAS  PubMed  Google Scholar 

  • Nobuhara KK, Wilson JM (1996) Pathophysiology of congenital diaphragmatic hernia. Semin Pediatr Surg 5(4):234–242

    CAS  PubMed  Google Scholar 

  • Northway WH Jr (1992) An introduction to bronchopulmonary dysplasia. Clin Perinatol 19(3):489–495

    PubMed  Google Scholar 

  • Orlando R 3rd, Gluck EH, Cohen M, Mesologites CG (1988) Ultra-high-frequency jet ventilation in a bronchopleural fistula model. Arch Surg 123:591–593

    PubMed  Google Scholar 

  • Otto CW, Quan SF, Conhan TJ, Calkins JM, Waterson CK, Hameroff SR (1983) Hemodynamic effects of high-frequency jet ventilation. Anesth Analg 62:298–304

    CAS  PubMed  Google Scholar 

  • Outerbridge E, Roloff DW, Roloff DW, Stern L (1972) Continuous negative pressure in the management of severe respiratory distress syndrome. J Pediatr 81:348–391

    Google Scholar 

  • Panitch HB (2001) Bronchiolitis in infants. Curr Opin Pediatr 13:256–260

    CAS  PubMed  Google Scholar 

  • Parker JC, Townsley MI, Rippe B, Taylor AE, Thigpen J (1984) Increased microvascular permeability in dog lungs due to high peak airway pressures. J Appl Physiol 57(6):1809–1816

    CAS  PubMed  Google Scholar 

  • Parker JC, Hernandez LA, Longenecker GL, Peevy K, Johnson W (1990) Lung edema caused by high peak inspiratory pressures in dogs. Role of increased microvascular filtration pressure and permeability. Am Rev Respir Dis 142(2):321–328

    CAS  PubMed  Google Scholar 

  • Parker JC, Hernandez LA, Peevy KJ (1993) Mechanisms of ventilator-induced lung injury. Crit Care Med 21(1):131–143

    CAS  PubMed  Google Scholar 

  • Penny DJ, Redington A (1991) Doppler echocardiography evaluation of the pulmonary blood flow after Fontan operation: the role of the heart. Br Heart J 66:372–374

    CAS  PubMed Central  PubMed  Google Scholar 

  • Petrucci N, Iacovelli W (2007) Lung protective ventilation strategy for the acute respiratory distress syndrome. Cochrane Database Syst Rev (3):CD003844

    Google Scholar 

  • Pingleton SK (1988) Complications of acute respiratory failure. Am Rev Respir Dis 137(6):1463–1493

    CAS  PubMed  Google Scholar 

  • Pizov R, Shir Y, Eimerl D, Uretzky G, Milgalter E, Cotev S (1987) One-lung high-frequency ventilation in the management of traumatic tear of bronchus in a child. Crit Care Med 15(12):1160–1161

    CAS  PubMed  Google Scholar 

  • Plavka R, Dokoupilová M, Pazderová L, Kopecký P, Sebron V, Zapadlo M, Keszler M (2006) High-frequency jet ventilation improves gas exchange in extremely immature infants with evolving chronic lung disease. Am J Perinatol 23:467–472

    PubMed  Google Scholar 

  • Plotz FB, Hassing MB, Sibarani-Ponsen RD, Markhorst DG (2003) Differentiated HFO and CMV for independent lung ventilation in a pediatric patient. Intensive Care Med 29(10):1855

    CAS  PubMed  Google Scholar 

  • Poelaert J, Mortier E, De Deyne C, Rolly G (1987) The use of combined high-frequency jet ventilation and intermittent positive pressure ventilation in bilateral bronchopleural fistulae. Acta Anaesthesiol Belg 38:225–230

    CAS  PubMed  Google Scholar 

  • Pokora T, Bing DX, Mammel MC et al (1983) Neonatal high-frequency jet ventilation. Pediatrics 72:27–32

    CAS  PubMed  Google Scholar 

  • Preventive Services Task Force (1996) Guide to clinical preventive services: report of the U.S. Preventive Services Task Force, 2nd edn. Williams & Wilkins, Baltimore, Ref Type: Serial (Book, Monograph)

    Google Scholar 

  • Quan SF, Militzer HW, Calkins JM et al (1984) Comparison of high-frequency jet ventilation with conventional mechanical ventilation in saline-lavaged rabbits. Crit Care Med 12:759–763

    CAS  PubMed  Google Scholar 

  • Raine J, Redington A, Benatar A, Samuels MP, Southall DP (1993) Continuous negative extrathoracic pressure and cardiac output-a pilot study. Eur J Pediatr 152:595–598

    CAS  PubMed  Google Scholar 

  • Randolph AG (2009) Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med 37(8):2448–2454

    PubMed  Google Scholar 

  • Randolph AG, Meert KL, O’Neil ME, Hanson JH, Luckett PM, Arnold JH et al (2003) The feasibility of conducting clinical trials in infants and children with acute respiratory failure. Am J Respir Crit Care Med 167(10):1334–1340

    PubMed  Google Scholar 

  • Randomized study of high-frequency oscillatory ventilation in infants with severe respiratory distress syndrome. HiFO Study Group (1993) J Pediatr 122(4):609–619

    Google Scholar 

  • Rimensberger PC (2003) ICU cornerstone: high frequency ventilation is here to stay. Crit Care 7(5):342–344

    PubMed Central  PubMed  Google Scholar 

  • Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27(9):1946–1952

    CAS  PubMed  Google Scholar 

  • Rimensberger PC, Beghetti M, Hanquinet S, Berner M (2000) First intention high-frequency oscillation with early lung volume optimization improves pulmonary outcome in very low birth weight infants with respiratory distress syndrome. Pediatrics 105(6):1202–1208

    CAS  PubMed  Google Scholar 

  • Ritz R, Benson M, Bishop MJ (1984) Measuring gas leakage from bronchopleural fistulas during high-frequency jet ventilation. Crit Care Med 12:836–837

    CAS  PubMed  Google Scholar 

  • Rojas MA, Lozano JM, Rojas MX, Bose CL, Rondon MA, Ruiz G et al (2005) Randomized, multicenter trial of conventional ventilation versus high-frequency oscillatory ventilation for the early management of respiratory failure in term or near-term infants in Colombia. J Perinatol 25(11):720–724

    PubMed  Google Scholar 

  • Roos A, Lewis J, Thomas JR, Eugene I et al (1961) Pulmonary vascular resistance as determined by lung inflation and vascular pressure. J Appl Physiol 16:77–84

    CAS  PubMed  Google Scholar 

  • Roth MD, Wright JW, Bellamy PE (1988) Gas flow through a bronchopleural fistula. Measuring the effects of high-frequency jet ventilation and chest-tube suction. Chest 93:210–213

    CAS  PubMed  Google Scholar 

  • Roupie E, Lepage E, Wysocki M, Fagon JY, Chastre J, Dreyfuss D et al (1999) Prevalence, etiologies and outcome of the acute respiratory distress syndrome among hypoxemic ventilated patients. SRLF Collaborative Group on Mechanical Ventilation. Societe de Reanimation de Langue Francaise. Intensive Care Med 25(9):920–929

    CAS  PubMed  Google Scholar 

  • Roy BJ, Rycus P, Conrad SA, Clark RH (2000) The changing demographics of neonatal extracorporeal membrane oxygenation patients reported to the Extracorporeal Life Support Organization (ELSO) Registry. Pediatrics 106:1334–1338

    CAS  PubMed  Google Scholar 

  • Rubio JJ, Algora-Weber A, Dominguez-de Villota E, Chamorro C, Mosquera JM (1986) Prolonged high-frequency jet ventilation in a patient with bronchopleural fistula. An alternative mode of ventilation. Intensive Care Med 12:161–163

    CAS  PubMed  Google Scholar 

  • Samuels M (1998) The role of negative pressure ventilation. Arch Dis Child 79:94

    CAS  PubMed Central  PubMed  Google Scholar 

  • Samuels MP, Raine J, Wright T, Alexander A, Southall DP (1996) Continuous negative extrathoracic pressure in neonatal respiratory failure. Pediatrics 98:1154–1160

    CAS  PubMed  Google Scholar 

  • Sanyal SK, Mitchell C, Huges WT, Cacaces J (1975) Continuous negative chest wall pressure as therapy for severe respiratory distress in older children. Chest 68:143–148

    CAS  PubMed  Google Scholar 

  • Sanyal SK, Avery T, Mohinder K, Hughes W, Harris K (1977a) Continuous negative chest wall pressure therapy for assisting ventilation in older children with progressive respiratory insufficiency. Acta Paediatr Scand 66:451–456

    CAS  PubMed  Google Scholar 

  • Sanyal SK, Avery TL, Huges WT, Harris KS (1977b) Management of severe respiratory insufficiency due to Pneumocystis carinii pneumonitis in immunosuppressed hosts. Am Rev Respir Dis 116:223–231

    CAS  PubMed  Google Scholar 

  • Sarnaik AP, Meert KL, Pappas MD, Simpson PM, Lieh-Lai MW, Heidemann SM (1996) Predicting outcome in children with severe acute respiratory failure treated with high-frequency ventilation. Crit Care Med 24:1396–1402

    CAS  PubMed  Google Scholar 

  • Sedeek KA, Takeuchi M, Suchodolski K, Kacmarek RM (2003) Determinants of tidal volume during high-frequency oscillation. Crit Care Med 31(1):227–231

    PubMed  Google Scholar 

  • Seferian EG, Henry NK, Wylam ME (2006) High-frequency oscillatory ventilation in an infant with cystic fibrosis and bronchiolitis. Respir Med 100(8):1466–1469

    PubMed  Google Scholar 

  • Sekar KC, Corff KE (2009) To tube or not to tube babies with respiratory distress syndrome. J Perinatol 29:S68–S72

    PubMed  Google Scholar 

  • Shah PS, Ohlsson A, Shah JP (2013) Continuous negative extrathoracic pressure or continuous positive airway pressure compared to conventional ventilation for acute hypoxaemic respiratory failure in children.Cochrane Database Syst Rev 11:CD003699. doi: 10.1002/14651858.CD003699.pub4. Review

  • Sharma S, Abubakar KM, Keszler M (2010) Tidal volume in infants with congenital diaphragmatic hernia. PAS meeting Vancouver BC, May 2010. E-PAS20101466.146

    Google Scholar 

  • Shekerdemian LS, Bush A, Lincoln C, Shore DF, Petros A, Redington A (1997a) Cardiopulmonary interactions in healthy children and children after simple cardiac surgery: the effects of positive and negative pressure ventilation. Heart 78:587–593

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shekerdemian LS, Bush A, Darril F, Linoln C, Redington A (1997b) Cardiopulmonary interaction after Fontan operations: augmentation of cardiac output using negative pressure ventilation. Circulation 96(11):3934–3942

    CAS  PubMed  Google Scholar 

  • Shekerdemian LS, Bush A, Shore DF, Lincoln C, Redington A (1999) Cardiorespiratory response to negative pressure ventilation after tetralogy of Fallot repair: a hemodynamic tool for patients with low-output state. J Am Coll Cardiol 33:549–555

    CAS  PubMed  Google Scholar 

  • Shekerdemian LS, Shulze-neic I, Redington A, Bush A, Penny DJ (2000) Negative pressure ventilation as haemodynamic rescue following surgery for congenital heart disease. Intensive Care Med 26:93–96

    CAS  PubMed  Google Scholar 

  • Shen HN, Lu FL, Wu HD, Yu CJ, Yang PC (2002) Management of tension pneumatocele with high-frequency oscillatory ventilation. Chest 121(1):284–286

    PubMed  Google Scholar 

  • Slee-Wijffels FY, van der Vaart KRM, Twisk JW, Markhorst DG, Plotz FB (2005) High-frequency oscillatory ventilation in children: a single-center experience of 53 cases. Crit Care 9(3):R274–R279

    PubMed Central  PubMed  Google Scholar 

  • Smith DW, Derish MT, Frankel LR et al (1993) High-frequency jet ventilation in children with the adult respiratory distress syndrome complicated by pulmonary barotrauma. Pediatr Pulmonol 15:279–286

    CAS  PubMed  Google Scholar 

  • Sohma A, Brampton WJ, Dunnill MS, Sykes MK (1992) Effect of ventilation with positive end-expiratory pressure on the development of lung damage in experimental acid aspiration pneumonia in the rabbit. Intensive Care Med 18(2):112–117

    CAS  PubMed  Google Scholar 

  • Spitzer AR, Butler S, Fox WW (1989) Ventilatory response of combined high frequency jet ventilation and conventional mechanical ventilation for the rescue treatment of severe neonatal lung disease. Pediatr Pulmonol 7:244–250

    CAS  PubMed  Google Scholar 

  • Stewart DL, Dela Cruz TV, Duncan SD, Cook LN (1996) Response to high frequency jet ventilation may predict the need for extracorporeal membrane oxygenation. Eur Respir J 9(6):1257–1260

    CAS  PubMed  Google Scholar 

  • Sugiura M, Nakabayashi H, Vaclavik S, Froese AB (1990) Lung volume maintenance during high-frequency jet ventilation improves physiological and biochemical outcome of lavaged rabbit lung. Physiologist 33:A123

    Google Scholar 

  • Suguihara C, Bancalari E, Goldberg RN, Barrios P, Here D (1987) Hemodynamic and ventilatory effects of high-frequency jet and conventional ventilation in piglets with lung lavage. Biol Neonate 51:241–248

    CAS  PubMed  Google Scholar 

  • Suzuki H, Papazoglou K, Bryan AC (1992) Relationship between PaO2 and lung volume during high frequency oscillatory ventilation. Acta Paediatr Jpn 34(5):494–500

    CAS  PubMed  Google Scholar 

  • Taskar V, John J, Evander E, Robertson B, Jonson B (1997) Surfactant dysfunction makes lungs vulnerable to repetitive collapse and reexpansion. Am J Respir Crit Care Med 155(1):313–320

    CAS  PubMed  Google Scholar 

  • Telford C, Waters L, Vyas H, Marlow N (2006) Outcome after neonatal continuous negative-pressure ventilation: follow up assessment. Lancet 367:1080–1085

    PubMed  Google Scholar 

  • Terragni P, Rosboch GL, Corno E, Menaldo E, Tealdi A, Borasio P et al (2005) Independent high-frequency oscillatory ventilation in the management of asymmetric acute lung injury. Anesth Analg 100(6):1793–1796

    PubMed  Google Scholar 

  • Thomas MR, Rafferty GF, Limb ES, Peacock JL, Calvert SA, Marlow N et al (2004) Pulmonary function at follow-up of very preterm infants from the United Kingdom oscillation study. Am J Respir Crit Care Med 169(7):868–872

    PubMed  Google Scholar 

  • Thompson MW, Bates JN, Klein JM (1995) Treatment of respiratory failure in an infant with bronchopulmonary dysplasia infected with respiratory syncytial virus using inhaled nitric oxide and high frequency ventilation. Acta Paediatr 84(1):100–102

    CAS  PubMed  Google Scholar 

  • Tremblay L, Valenza F, Ribeiro SP, Li J, Slutsky AS (1997) Injurious ventilatory strategies increase cytokines and c-fos m-RNA expression in an isolated rat lung model. J Clin Invest 99(5):944–952

    CAS  PubMed Central  PubMed  Google Scholar 

  • Trindade O, Goldberg RN, Bancalari E et al (1985) Conventional vs high-frequency jet ventilation in a piglet model of meconium aspiration: comparison of pulmonary and hemodynamic effects. J Pediatr 107:115–120

    CAS  PubMed  Google Scholar 

  • Truffert P, Paris-Llado J, Escande B, Magny JF, Cambonie G, Saliba E et al (2007) Neuromotor outcome at 2 years of very preterm infants who were treated with high-frequency oscillatory ventilation or conventional ventilation for neonatal respiratory distress syndrome. Pediatrics 119(4):e860–e865

    PubMed  Google Scholar 

  • Tsuno K, Miura K, Takeya M, Kolobow T, Morioka T (1991) Histopathologic pulmonary changes from mechanical ventilation at high peak airway pressures. Am Rev Respir Dis 143(5 Pt 1):1115–1120

    CAS  PubMed  Google Scholar 

  • Turnbull AD, Carlon G, Howland WS, Beattie EJ Jr (1981) High-frequency jet ventilation in major airway or pulmonary disruption. Ann Thorac Surg 32:468–474

    CAS  PubMed  Google Scholar 

  • van Genderingen HR, van Vught JA, Jansen JR, Duval EL, Markhorst DG, Versprille A (2002) Oxygenation index, an indicator of optimal distending pressure during high-frequency oscillatory ventilation? Intensive Care Med 28(8):1151–1156

    PubMed  Google Scholar 

  • van Genderingen HR, van Vught AJ, Jansen JR (2004) Regional lung volume during high-frequency oscillatory ventilation by electrical impedance tomography. Crit Care Med 32(3):787–794

    PubMed  Google Scholar 

  • van Kaam AH, Rimensberger PC (2007) Lung-protective ventilation strategies in neonatology: what do we know – what do we need to know? Crit Care Med 35(3):925–931

    PubMed  Google Scholar 

  • Vernon D, Lynch JM, Salyer JW (1996) High-frequency jet ventilation in the pediatric intensive care unit. Respir Care Clin N Am 2:559–571

    CAS  PubMed  Google Scholar 

  • Walsh-Sukys MC, Tyson JE, Wright LL, Bauer CR, Korones SB, Stevenson DK, Verter J, Stoll BJ, Lemons JA, Papile LA, Shankaran S, Donovan EF, Oh W, Ehrenkranz RA, Fanaroff AA (2000) Persistent pulmonary hypertension of the newborn in the era before nitric oxide: practice variation and outcomes. Pediatrics 105(1 Pt 1):14–20

    CAS  PubMed  Google Scholar 

  • Webb HH, Tierney DF (1974) Experimental pulmonary edema due to intermittent positive pressure ventilation with high inflation pressures. Protection by positive end-expiratory pressure. Am Rev Respir Dis 110(5):556–565

    CAS  PubMed  Google Scholar 

  • Weiner JH, CHatburn RL, Carlo WA (1987) Ventilatory and hemodynamic effects of high-frequency jet ventilation following cardiac surgery. Respir Care 32:332–338

    Google Scholar 

  • Wiswell TE, Foster NH, Slayter MV, Hachey WE (1992) Management of a piglet model of the meconium aspiration syndrome with high-frequency or conventional ventilation. Am J Dis Child 146:1287–1293

    CAS  PubMed  Google Scholar 

  • Wiswell TE, Peabody SS, Davis JM et al (1994) Surfactant therapy and high-frequency jet ventilation in the management of a piglet model of the meconium aspiration syndrome. Pediatr Res 36:494–500

    CAS  PubMed  Google Scholar 

  • Wiswell TE, Graziani LJ, Kornhauser MS et al (1996a) High-frequency jet ventilation in the early management of respiratory distress syndrome is associated with a greater risk for adverse outcomes. Pediatrics 98:1035–1043

    CAS  PubMed  Google Scholar 

  • Wiswell TE, Graziani LJ, Kornhauser MS et al (1996b) Effects of hypocarbia on the development of cystic periventricular leukomalacia in premature infants treated with HFJV. Pediatrics 98:918–924

    CAS  PubMed  Google Scholar 

  • Woodgate PG, Davies MW (2001) Permissive hypercapnia for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst Rev 2, CD002061

    PubMed  Google Scholar 

  • Wratney AT, Gentile MA, Hamel DS, Cheifetz IM (2004) Successful treatment of acute chest syndrome with high-frequency oscillatory ventilation in pediatric patients. Respir Care 49(3):263–269

    PubMed  Google Scholar 

  • Wunsch H, Mapstone J (2004) High-frequency ventilation versus conventional ventilation for treatment of acute lung injury and acute respiratory distress syndrome. Cochrane Database Syst Rev (1):CD004085

    Google Scholar 

  • Young D, Lamb SE, Shah S, MacKenzie I, Tunnicliffe W, Lall R, Rowan K, Cuthbertson BH, OSCAR Study Group (2013) High-frequency oscillation for acute respiratory distress syndrome. N Engl J Med 368(9):806–813

    Google Scholar 

  • Yu WL, Lu ZJ, Wang Y, Shi LP, Kuang FW, Qian SY et al (2009) The epidemiology of acute respiratory distress syndrome in pediatric intensive care units in China. Intensive Care Med 35(1):136–143

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Casper Bollen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bollen, C. et al. (2015). Indications for Nonconventional Ventilation Modes. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_19

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics