Basic and Practically Useful Respiratory Monitoring of a Mechanically Ventilated Patient in Resource-Limited Countries

  • Andrew C. ArgentEmail author


The development of intensive care has seen a proliferation of devices for patient monitoring. An underlying assumption has been that improved monitoring can only result in improved patient care. In fact increasing complexity of the intensive care environment, increased presentation of data, and the presence of multiple alarm system may lead to deterioration in the quality of care as staff are overwhelmed by the complexity and volume of information (Frey and Argent 2004).


Tidal Volume Endotracheal Tube Electrical Impedance Tomography Periventricular Leukomalacia Ventilator Circuit 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Adams AB, Cakar N, Marini JJ (2001) Static and dynamic pressure-volume curves reflect different aspects of respiratory system mechanics in experimental acute respiratory distress syndrome. Respir Care 46:686–693PubMedGoogle Scholar
  2. Albaiceta GM, Blanch L, Lucangelo U (2008) Static pressure-volume curves of the respiratory system: were they just a passing fad? Curr Opin Crit Care 14:80–86PubMedCrossRefGoogle Scholar
  3. Albuali WH, Singh RN, Fraser DD et al (2007) Have changes in ventilation practice improved outcome in children with acute lung injury? Pediatr Crit Care Med 8:324–330PubMedCrossRefGoogle Scholar
  4. Al-Majed SI, Thompson JE, Watson KF, Randolph AG (2004) Effect of lung compliance and endotracheal tube leakage on measurement of tidal volume. Crit Care 8:R398–R402PubMedCentralPubMedCrossRefGoogle Scholar
  5. Amato MB, Barbas CS, Medeiros DM et al (1995) Beneficial effects of the “open lung approach” with low distending pressures in acute respiratory distress syndrome. A prospective randomized study on mechanical ventilation. Am J Respir Crit Care Med 152:1835–1846PubMedCrossRefGoogle Scholar
  6. Amato MB, Barbas CS, Medeiros DM et al (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354PubMedCrossRefGoogle Scholar
  7. Bhat YR, Abhishek N (2008) Mainstream end-tidal carbon dioxide monitoring in ventilated neonates. Singapore Med J 49:199–203PubMedGoogle Scholar
  8. Bhende MS (2001) End-tidal carbon dioxide monitoring in pediatrics – clinical applications. J Postgrad Med 47:215–218PubMedGoogle Scholar
  9. Brochard L, Roudot-Thoraval F, Roupie E et al (1998) Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med 158:1831–1838PubMedCrossRefGoogle Scholar
  10. Brooks LJ, DiFiore JM, Martin RJ (1997) Assessment of tidal volume over time in preterm infants using respiratory inductance plethysmography, The CHIME Study Group. Collaborative Home Infant Monitoring Evaluation. Pediatr Pulmonol 23:429–433PubMedCrossRefGoogle Scholar
  11. Cannon ML, Cornell J, Tripp-Hamel DS et al (2000) Tidal volumes for ventilated infants should be determined with a pneumotachometer placed at the endotracheal tube. Am J Respir Crit Care Med 162:2109–2112PubMedCrossRefGoogle Scholar
  12. Caples SM, Hubmayr RD (2003) Respiratory monitoring tools in the intensive care unit. Curr Opin Crit Care 9:230–235PubMedCrossRefGoogle Scholar
  13. Castle RA, Dunne CJ, Mok Q, Wade AM, Stocks J (2002) Accuracy of displayed values of tidal volume in the pediatric intensive care unit. Crit Care Med 30:2566–2574PubMedCrossRefGoogle Scholar
  14. Chakravarti S, Srivastava S, Mittnacht AJ (2008) Near infrared spectroscopy (NIRS) in children. Semin Cardiothorac Vasc Anesth 12:70–79PubMedCrossRefGoogle Scholar
  15. Choi G, Wolthuis EK, Bresser P et al (2006) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents alveolar coagulation in patients without lung injury. Anesthesiology 105:689–695PubMedCrossRefGoogle Scholar
  16. Chow LC, Vanderhal A, Raber J, Sola A (2002) Are tidal volume measurements in neonatal pressure-controlled ventilation accurate? Pediatr Pulmonol 34:196–202PubMedCrossRefGoogle Scholar
  17. Cretikos MA, Bellomo R, Hillman K, Chen J, Finfer S, Flabouris A (2008) Respiratory rate: the neglected vital sign. Med J Aust 188:657–659PubMedGoogle Scholar
  18. DeBoer S, Seaver M (2004) End-tidal CO2 verification of endotracheal tube placement in neonates. Neonatal Netw 23:29–38PubMedCrossRefGoogle Scholar
  19. Dela Cruz RH, Banner MJ, Weldon BC (2005) Intratracheal pressure: a more accurate reflection of pulmonary airway pressure in pediatric patients with respiratory failure. Pediatr Crit Care Med 6:175–181PubMedCrossRefGoogle Scholar
  20. Duke T, Wandi F, Jonathan M et al (2008) Improved oxygen systems for childhood pneumonia: a multihospital effectiveness study in Papua New Guinea. Lancet 372:1328–1333PubMedCrossRefGoogle Scholar
  21. Duke T, Subhi R, Peel D, Frey B (2009) Pulse oximetry: technology to reduce child mortality in developing countries. Ann Trop Paediatr 29:165–175PubMedCrossRefGoogle Scholar
  22. Erasmus PD (2004) The use of end-tidal carbon dioxide monitoring to confirm endotracheal tube placement in adult and paediatric intensive care units in Australia and New Zealand. Anaesth Intensive Care 32:672–675PubMedGoogle Scholar
  23. Ferguson ND, Frutos-Vivar F, Esteban A et al (2005) Airway pressures, tidal volumes, and mortality in patients with acute respiratory distress syndrome. Crit Care Med 33:21–30PubMedCrossRefGoogle Scholar
  24. Frerichs I, Schiffmann H, Hahn G, Hellige G (2001) Non-invasive radiation-free monitoring of regional lung ventilation in critically ill infants. Intensive Care Med 27:1385–1394PubMedCrossRefGoogle Scholar
  25. Frey B, Argent A (2004) Safe paediatric intensive care. Part 1: does more medical care lead to improved outcome? Intensive Care Med 30:1041–1046PubMedCrossRefGoogle Scholar
  26. Fujita Y, Imanaka H, Fujino Y et al (2006) Effect of humidifying devices on the measurement of tidal volume by mechanical ventilators. J Anesth 20:166–172PubMedCrossRefGoogle Scholar
  27. Geven WB, Nagler E, de Boo T, Lemmens W (1987) Combined transcutaneous oxygen, carbon dioxide tensions and end-expired CO2 levels in severely ill newborns. Adv Exp Med Biol 220:115–120PubMedGoogle Scholar
  28. Greer KJ, Bowen WA, Krauss AN (2003) End-tidal CO2 as a function of tidal volume in mechanically ventilated infants. Am J Perinatol 20:447–451PubMedCrossRefGoogle Scholar
  29. Hand IL, Shepard EK, Krauss AN, Auld PA (1989) Discrepancies between transcutaneous and end-tidal carbon dioxide monitoring in the critically ill neonate with respiratory distress syndrome. Crit Care Med 17:556–559PubMedCrossRefGoogle Scholar
  30. Hanson JH, Flori H (2006) Application of the acute respiratory distress syndrome network low-tidal volume strategy to pediatric acute lung injury. Respir Care Clin N Am 12:349–357PubMedGoogle Scholar
  31. Heinrich S, Schiffmann H, Frerichs A, Klockgether-Radke A, Frerichs I (2006) Body and head position effects on regional lung ventilation in infants: an electrical impedance tomography study. Intensive Care Med 32:1392–1398PubMedCrossRefGoogle Scholar
  32. Hejlesen OK, Cichosz SL, Vangsgaard S, Andresen MF, Madsen LP (2009) Clinical implications of a quality assessment of transcutaneous CO2 monitoring in preterm infants in neonatal intensive care. Stud Health Technol Inform 150:490–494PubMedGoogle Scholar
  33. Herber-Jonat S, von Bismarck P, Freitag-Wolf S, Nikischin W (2008) Limitation of measurements of expiratory tidal volume and expiratory compliance under conditions of endotracheal tube leaks. Pediatr Crit Care Med 9:69–75PubMedCrossRefGoogle Scholar
  34. Heulitt MJ, Holt SJ, Thurman TL, Hall RA, Jo CH, Simpson P (2005) Reliability of measured tidal volume in mechanically ventilated young pigs with normal lungs. Intensive Care Med 31:1255–1261PubMedCrossRefGoogle Scholar
  35. Heulitt MJ, Thurman TL, Holt SJ, Jo CH, Simpson P (2009) Reliability of displayed tidal volume in infants and children during dual-controlled ventilation. Pediatr Crit Care Med 10:661–667PubMedCrossRefGoogle Scholar
  36. Island ER, Church JA, Shaul DB (2001) Short-term complications of central line placement in children with the human immunodeficiency virus. J Pediatr Surg 36:1777–1780PubMedCrossRefGoogle Scholar
  37. Kemper KJ, Benson MS, Bishop MJ (1992) Interobserver variability in assessing pediatric postextubation stridor. Clin Pediatr (Phila) 31:405–408CrossRefGoogle Scholar
  38. Khemani RG, Conti D, Alonzo TA, Bart RD 3rd, Newth CJ (2009) Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med 35:1428–1437PubMedCrossRefGoogle Scholar
  39. Kreit JW, Sciurba FC (1996) The accuracy of pneumotachograph measurements during mechanical ventilation. Am J Respir Crit Care Med 154:913–917PubMedCrossRefGoogle Scholar
  40. Kugelman A, Zeiger-Aginsky D, Bader D, Shoris I, Riskin A (2008) A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics 122:e1219–e1224PubMedCrossRefGoogle Scholar
  41. Lee SW, Hong YS, Han C et al (2009) Concordance of end-tidal carbon dioxide and arterial carbon dioxide in severe traumatic brain injury. J Trauma 67:526–530PubMedCrossRefGoogle Scholar
  42. Liu LL, Gallaher MM, Davis RL, Rutter CM, Lewis TC, Marcuse EK (2004) Use of a respiratory clinical score among different providers. Pediatr Pulmonol 37:243–248PubMedCrossRefGoogle Scholar
  43. Main E, Stocks J (2004) The influence of physiotherapy and suction on respiratory deadspace in ventilated children. Intensive Care Med 30:1152–1159PubMedCrossRefGoogle Scholar
  44. Main E, Castle R, Stocks J, James I, Hatch D (2001) The influence of endotracheal tube leak on the assessment of respiratory function in ventilated children. Intensive Care Med 27:1788–1797PubMedCrossRefGoogle Scholar
  45. Main E, Castle R, Newham D, Stocks J (2004) Respiratory physiotherapy vs. Suction: the effects on respiratory function in ventilated infants and children. Intensive Care Med 30:1144–1151PubMedCrossRefGoogle Scholar
  46. Meade MO, Cook DJ, Guyatt GH et al (2008) Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end-expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial. JAMA 299:637–645PubMedCrossRefGoogle Scholar
  47. Mehta NM, Arnold JH (2004) Mechanical ventilation in children with acute respiratory failure. Curr Opin Crit Care 10:7–12PubMedCrossRefGoogle Scholar
  48. Morrow B, Angus L, Greenhough D et al (2010) The reliability of identifying bronchial breathing by auscultation. Int J Ther Rehabil 17:69–74CrossRefGoogle Scholar
  49. Nasiroglu O, Weldon BC, Berman LS, Haque IU (2006) Ventilator Y-piece pressure compared with intratracheal airway pressure in healthy intubated children. J Clin Monit Comput 20:95–100PubMedCrossRefGoogle Scholar
  50. Newth CJ, Rachman B, Patel N, Hammer J (2004) The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr 144:333–337PubMedCrossRefGoogle Scholar
  51. Nikischin W, Lange M (2003) Correction of compliance and resistance altered by endotracheal tube leaks. Pediatr Crit Care Med 4:344–352PubMedCrossRefGoogle Scholar
  52. Nikischin W, Herber-Jonat S, von Bismarck P, Lange M, Grabitz R (2007) Calculation of intratracheal airway pressure in ventilated neonatal piglets with endotracheal tube leaks. Crit Care Med 35:1383–1389PubMedCrossRefGoogle Scholar
  53. Pedersen T, Moller AM, Hovhannisyan K (2009) Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev 4, CD002013PubMedGoogle Scholar
  54. Pohlman MC, McCallister KE, Schweickert WD et al (2008) Excessive tidal volume from breath stacking during lung-protective ventilation for acute lung injury. Crit Care Med 36:3019–3023PubMedCrossRefGoogle Scholar
  55. Rais-Bahrami K, Rivera O, Mikesell GT, Short BL (2002a) Continuous blood gas monitoring using an in-dwelling optode method: comparison to intermittent arterial blood gas sampling in ECMO patients. J Perinatol 22:472–474PubMedCrossRefGoogle Scholar
  56. Rais-Bahrami K, Rivera O, Mikesell GT, Short BL (2002b) Continuous blood gas monitoring using an in-dwelling optode method: clinical evaluation of the neotrend sensor using a luer stub adaptor to access the umbilical artery catheter. J Perinatol 22:367–369PubMedCrossRefGoogle Scholar
  57. Randolph AG (2009) Management of acute lung injury and acute respiratory distress syndrome in children. Crit Care Med 37:2448–2454PubMedCrossRefGoogle Scholar
  58. Ranucci M, Isgro G, De La Torre T et al (2008) Continuous monitoring of central venous oxygen saturation (Pediasat) in pediatric patients undergoing cardiac surgery: a validation study of a new technology. J Cardiothorac Vasc Anesth 22:847–852PubMedCrossRefGoogle Scholar
  59. Rimensberger PC, Pristine G, Mullen BM, Cox PN, Slutsky AS (1999) Lung recruitment during small tidal volume ventilation allows minimal positive end-expiratory pressure without augmenting lung injury. Crit Care Med 27:1940–1945PubMedCrossRefGoogle Scholar
  60. Rohlwink UK, Figaji AA (2010) Methods of monitoring brain oxygenation. Childs Nerv Syst 26:453–464PubMedCrossRefGoogle Scholar
  61. Roilides E, Marshall D, Venzon D, Butler K, Husson R, Pizzo PA (1991) Bacterial infections in human immunodeficiency virus type 1-infected children: the impact of central venous catheters and antiretroviral agents. Pediatr Infect Dis J 10:813–819PubMedCrossRefGoogle Scholar
  62. Schultz MJ (2008) Lung-protective mechanical ventilation with lower tidal volumes in patients not suffering from acute lung injury: a review of clinical studies. Med Sci Monit 14:RA22–RA26PubMedGoogle Scholar
  63. Schwemmer U, Arzet HA, Trautner H, Rauch S, Roewer N, Greim CA (2006) Ultrasound-guided arterial cannulation in infants improves success rate. Eur J Anaesthesiol 23:476–480PubMedCrossRefGoogle Scholar
  64. Sullivan KJ, Kissoon N, Goodwin SR (2005) End-tidal carbon dioxide monitoring in pediatric emergencies. Pediatr Emerg Care 21:327–332, quiz 333–5PubMedCrossRefGoogle Scholar
  65. Terragni PP, Rosboch GL, Lisi A, Viale AG, Ranieri VM (2003) How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients. Eur Respir J Suppl 42:15s–21sPubMedCrossRefGoogle Scholar
  66. Tingay DG, Stewart MJ, Morley CJ (2005) Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed 90:F523–F526PubMedCentralPubMedCrossRefGoogle Scholar
  67. Tobias JD (2009) Transcutaneous carbon dioxide monitoring in infants and children. Paediatr Anaesth 19:434–444PubMedCrossRefGoogle Scholar
  68. Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network (2000) N Engl J Med 342:1301–1308Google Scholar
  69. Warner KJ, Cuschieri J, Garland B et al (2009) The utility of early end-tidal capnography in monitoring ventilation status after severe injury. J Trauma 66:26–31PubMedCrossRefGoogle Scholar
  70. Wilson J, Russo P, Russo J, Tobias JD (2005) Noninvasive monitoring of carbon dioxide in infants and children with congenital heart disease: end-tidal versus transcutaneous techniques. J Intensive Care Med 20:291–295PubMedCrossRefGoogle Scholar
  71. Wolf GK, Grychtol B, Frerichs I et al (2007) Regional lung volume changes in children with acute respiratory distress syndrome during a derecruitment maneuver. Crit Care Med 35:1972–1978PubMedCrossRefGoogle Scholar
  72. Wolthuis EK, Choi G, Dessing MC et al (2008) Mechanical ventilation with lower tidal volumes and positive end-expiratory pressure prevents pulmonary inflammation in patients without preexisting lung injury. Anesthesiology 108:46–54PubMedCrossRefGoogle Scholar
  73. Worly JM, Fortenberry JD, Hansen I, Chambliss CR, Stockwell J (2004) Deep venous thrombosis in children with diabetic ketoacidosis and femoral central venous catheters. Pediatrics 113:e57–e60PubMedCrossRefGoogle Scholar
  74. Wyllie J, Carlo WA (2006) The role of carbon dioxide detectors for confirmation of endotracheal tube position. Clin Perinatol 33:111–119, viiPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Division of Paediatric Critical Care and Children’s Heart DiseaseSchool of Child and Adolescent Health, University of Cape TownCape TownSouth Africa
  2. 2.Pediatric Intensive CareRed Cross War Memorial Children’s HospitalCape TownSouth Africa

Personalised recommendations