Skip to main content

Classical Respiratory Monitoring

  • Chapter
  • First Online:
Pediatric and Neonatal Mechanical Ventilation

Abstract

Karl Wilhelm Scheele first discovered oxygen in 1772. This immense milepost in the history of science and medicine set into motion events that have led us to the present in which the delivery and monitoring of oxygen is a mainstay of critical care. It is now possible to continuously measure many key aspects of the complex movement of oxygen molecules from the atmosphere to the lungs, to the blood, to the tissues, and finally, to the cellular structures that use oxygen and nutrients to create the energy molecules that fuel our biological engines. This chapter will focus on the most commonly used oxygenation monitoring techniques including their measurement principles, utility, and limitations. However, before we explore a brief review of what can be monitored, it is useful to consider what should be monitored. Sometimes, our technology develops at a pace that far exceeds our wisdom in how to use it. “New technologies and procedures have developed so rapidly—and there are such economic and social incentives to use them—that the evaluation of their safety, efficacy, and cost-effectiveness as well as the consideration of their social and ethical consequences have lagged far behind” (Mosteller and Institute of Medicine 1985). Another term for this is technology creep, which refers to the continuing addition of technology that is both qualitatively and quantitatively more complex. Moreover, this often happens without any rigorous testing of the effect of this technology on patient outcomes. Most new instrument/device testing mandated by regulatory agencies prior to approval is focused on ensuring patient safety and measurement accuracy and precision, as opposed to proving that the device in question will alter patient outcomes or improve processes of care.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although still debated, evidence suggests that Scheele discovered oxygen independently and earlier than Joseph Priestly who has been widely credited with this breakthrough because he published his findings prior to Scheele. Others have suggested that oxygen was discovered even earlier by a Michał Sędziwój, a Polish alchemist and natural philosopher in the late sixteenth century.

  2. 2.

    Not long ago, I stood at the doorway of a room in our cardiac intensive care unit watching the care of a post-op cardiac surgery patient who was on extracorporeal membrane oxygenation. I counted 21 different LCD displays in the immediate beside area. These included cardiorespiratory monitors, infusion pumps, oxygen monitors, ventilation monitors, and the ECMO system. And of course, each of these was connected to the tiny patient by tubing, cables, lines, and sensors. It is a tribute to the focus and dedication of the clinical staff that there are no more mishaps in this complex visual environment.

  3. 3.

    Later in this chapter, the limitations of the calculation of oxygen saturation are discussed in detail.

  4. 4.

    Intra-instrument imprecision can be thought of as the variability of repeated samples of the same blood run consecutively in the same instrument.

  5. 5.

    This quote should be interpreted to mean that having not looked for something, and thus not found it, does not necessarily mean that it is not there.

  6. 6.

    Motion-resistant pulse oximetry will be discussed in detail in a later section of this chapter.

  7. 7.

    Both the oximetry and the monitoring system were manufactured by Masimo Inc, Irvine CA, USA.

  8. 8.

    Masimo Inc. Irvine California, USA.

References

  • Ahlborn V, Bohnhorst B, Peter CS, Poets CF (2000) False alarms in very low birthweight infants: comparison between three intensive care monitoring systems. Acta Paediatr 89(5):571–576

    CAS  PubMed  Google Scholar 

  • Aitken RS, Clark-Kennedy AE (1928) On the fluctuation in the composition of the alveolar air during the respiratory cycle in muscular exercise. J Physiol 65:389–411

    CAS  PubMed Central  PubMed  Google Scholar 

  • Amuchou SS, Singhal N (2006) Dose end-tidal carbon dioxide measurement correlate with arterial carbon dioxide in extremely low birth weight infants in the first week of life? Indian Pediatr 43:20–25

    Google Scholar 

  • Annabi EH, Barker SJ (2009) Severe methemoglobinemia detected by pulse oximetry. Anesth Analg 108(3):898–899

    PubMed  Google Scholar 

  • Anonymous (2006) American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: pediatric advanced life support. Pediatrics 117:e1005–e1028

    Google Scholar 

  • Arnold JH (2001) Measurement of the alveolar deadspace: are we there yet? Crit Care Med 29:1287–1288

    CAS  PubMed  Google Scholar 

  • Arnold JH, Thompson JE, Benjamin PK (1993) Respiratory deadspace measurements in neonates during extracorporeal membrane oxygenation. Crit Care Med 21:1895–1900

    CAS  PubMed  Google Scholar 

  • Arnold JH, Bower LK, Thompson JE (1995) Respiratory deadspace measurements in neonates with congenital diaphragmatic hernia. Crit Care Med 23:371–375

    CAS  PubMed  Google Scholar 

  • Barker SJ, Curry J, Redford D, Morgan S (2006) Measurement of carboxyhemoglobin and methemoglobin by pulse oximetry: a human volunteer study. Anesthesiol 105(5):892–897

    Google Scholar 

  • Bates JH, Schmalisch G, Filbrun D, Stocks J (2000) Tidal breath analysis for infant pulmonary function testing. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/American Thoracic Society. Eur Respir J 16:1180–1192

    CAS  PubMed  Google Scholar 

  • Beebe SA, Heery LB, Magarian S, Culberson J (1994) Pulse oximetry at moderate altitude: healthy children and children with upper respiratory infection. Clin Pediatr (Phila) 33(6):329–332

    CAS  Google Scholar 

  • Bendjelid K, Schutz N, Stotz M et al (2005) Transcutaneous PCO2 monitoring in critically ill adults: clinical evaluation of a new sensor. Crit Care Med 33:2203–2206

    PubMed  Google Scholar 

  • Berg RA, Henry C, Otto CW, Sanders AB, Kern KB, Hilwig RW, Ewy GA (1996) Initial end-tidal CO2 is markedly elevated during cardiopulmonary resuscitation after asphyxial cardiac arrest. Pediatr Emerg Care 12:245–248

    CAS  PubMed  Google Scholar 

  • Berkenbosch JW, Tobias JD (2002) Transcutaneous carbon dioxide monitoring during high-frequency oscillatory ventilation in infants and children. Crit Care Med 30:1024–1027

    PubMed  Google Scholar 

  • Berkenbosch JW, Lam J, Burd RS, Tobias JD (2001) Noninvasive monitoring of carbon dioxide during mechanical ventilation in older children: end-tidal versus transcutaneous techniques. Anesth Analg 92:1427–1431

    CAS  PubMed  Google Scholar 

  • Bernstein G, Knodel E, Heldt GP (1995) Airway leak size in neonates and autocycling of three flow-triggered ventilators. Crit Care Med 23:1739–1744

    CAS  PubMed  Google Scholar 

  • Bhat YR, Abhishek N (2008) Mainstream end-tidal carbon dioxide monitoring in ventilated neonates. Singapore Med J 49:199–203

    CAS  PubMed  Google Scholar 

  • Bhavani-Shankar K, Moseley H, Kumar AY, Delph Y (1992) Capnometry and anaesthesia. Can J Anaesth 39:617–632

    CAS  PubMed  Google Scholar 

  • Bhavani-Shankar K, Steinbrook RA, Mushlin PS et al (1998) Transcutaneous CO2 monitoring during laparoscopic cholecystectomy during pregnancy. Can J Anaesth 45:164–169

    CAS  PubMed  Google Scholar 

  • Birmingham PK, Cheney FW, Ward RJ (1986) Esophageal intubation: a review of detection techniques. Anesth Analg 65:886–891

    CAS  PubMed  Google Scholar 

  • Blanch L, Romero PV, Lucangelo U (2006) Volumetric capnography in the mechanically ventilated patient. Minerva Anestesiol 72:577–585

    CAS  PubMed  Google Scholar 

  • Bohnhorst B, Poets CF (1998) Major reduction in alarm frequency with a new pulse oximeter. Intensive Care Med 24:277–278

    CAS  PubMed  Google Scholar 

  • Bohnhorst B, Peter CS, Poets CF (2000) Pulse oximeters’ reliability in detecting hypoxemia and bradycardia: comparison between a conventional and two new generation oximeters. Crit Care Med 28(5):1565–1568

    CAS  PubMed  Google Scholar 

  • Bourdelles GL, Estagnasie P, Lenoir F, Brun P, Dreyfuss D (1998) Use of a pulse oximeter in an adult emergency department: impact on the number of arterial blood gas analyses ordered. Chest 113:1042–1047

    PubMed  Google Scholar 

  • Bowton DL, Scuderi PE, Harris L, Haponik EF (1991) Pulse oximetry monitoring outside the intensive care unit: progress or problem’. Ann Intern Med 115(5):450–454

    CAS  PubMed  Google Scholar 

  • Boxer RA, Gottesfeld I, Singh S, Lacorte MA, Parnell VA Jr, Walker P (1987) Noninvasive pulse oximetry in children with cyanotic congenital heart disease. Crit Care Med 15(11):1062–1064

    CAS  PubMed  Google Scholar 

  • Brashers VL (2002) Structure and function of the pulmonary system. In: McCamce KL, Heuther SE (eds) Pathophysiology: the biologic basis for disease in adults & children, 4th edn. Mosby, St Louis, p 1099

    Google Scholar 

  • Bratzke E, Downs JB, Smith RA (1998) Intermittent CPAP: a new mode of ventilation during general anesthesia. Anesthesiology 89:334–340

    CAS  PubMed  Google Scholar 

  • Breen PH, Mazumdar B, Skinner SC (1996a) Comparison of end-tidal PCO2 and average alveolar expired PCO2 during positive end-expiratory pressure. Anesth Analg 82:368–373

    CAS  PubMed  Google Scholar 

  • Breen PH, Serina ER, Barker SJ (1996b) Measurement of pulmonary CO2 elimination must exclude inspired CO2 measured at the capnometer sampling site. J Clin Monit 12:231–236

    CAS  PubMed  Google Scholar 

  • Carter BG, Wiwczaruk D, Hochmann M, Osborne A, Henning R (2001) Performance of transcutaneous PCO2 and pulse oximetry monitors in newborns and infants after cardiac surgery. Anaesth Intensive Care 29:260–265

    CAS  PubMed  Google Scholar 

  • Cassady G (1983) Transcutaneous monitoring in the newborn infant. J Pediatr 103:837–848

    CAS  PubMed  Google Scholar 

  • Chambrin MC (2001) Alarms in the intensive care unit: how can the number of false alarms be reduced? Crit Care 5:184–188

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cheifetz IM, Myers TR (2007) Respiratory therapies in the critical care setting. Should every mechanically ventilated patient be monitored with capnography from intubation to extubation? Respir Care 52:423–438

    PubMed  Google Scholar 

  • Choe H, Tashiro C, Fakumitsu K et al (1989) Comparison of recorded values from six pulse oximeters. Crit Care Med 17(7):678–681

    CAS  PubMed  Google Scholar 

  • Chow LC, Wright KW, Sola A, CSMC Oxygen Administration Study Group (2003) Can changes in clinical practice decrease the incidence of severe retinopathy of prematurity in very low birth weight infants? Pediatrics 111(2):339–345

    PubMed  Google Scholar 

  • Chu J, Clements JA, Cotton EK, Klaus MH, Sweet AY, Tooley WH, Bradley BL, Brandorff LC (1967) Neonatal pulmonary ischemia. I. Clinical and physiological studies. Pediatrics 40:709l–782l

    Google Scholar 

  • Clark RH, Gerstmann DR, Null DM Jr, deLemos RA (1992) Prospective randomized comparison of high-frequency oscillatory and conventional ventilation in respiratory distress syndrome. Pediatrics 89:5–12

    CAS  PubMed  Google Scholar 

  • Claure N, D’Ugard C, Bancalari E (2003) Elimination of ventilator dead space during synchronized ventilation in premature infants. J Pediatr 143:315–320

    PubMed  Google Scholar 

  • Clucas L, Doyle LW, Dawson J, Donath S, Davis PG (2007) Compliance with alarm limits for pulse oximetry in very preterm infants. Pediatrics 119:1056–1060

    PubMed  Google Scholar 

  • Cook CD, Sutherland JM, Segal S, Cherry RB, Mead J, McIlroy MB, Smith CA (1957) Studies of respiratory physiology in the newborn infant III. Measurements of mechanics of respiration. J Clin Invest 36:440–448

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cousineaua J, Anctilb S, Carcellerb A, Gonthierb M, Delvin EE (2005) Neonate capillary blood gas reference values. Clin Biochem 38(10):905–907

    Google Scholar 

  • Cox P, Tobias JD (2007) Noninvasive monitoring of PaCO2 during one-lung ventilation and minimal access surgery in adults: end-tidal versus transcutaneous techniques. J Minim Access Surg 3:8–13

    PubMed Central  PubMed  Google Scholar 

  • Criner GJ, Brennan K, Travaline JM, Kreimer D (1999) Efficacy and compliance with noninvasive positive pressure ventilation in patients with chronic respiratory failure. Chest 116:667–675

    CAS  PubMed  Google Scholar 

  • Dani C, Bertini G, Pezzati M, Cecchi A, Caviglioli C, Rubaltelli FF (2004) Early extubation and nasal continuous positive airway pressure after surfactant treatment for respiratory distress syndrome among preterm infants <30 weeks’ gestation. Pediatrics 113:e560–e563

    PubMed  Google Scholar 

  • Davies MW, Woodgate PG (2002) Tracheal gas insufflation for the prevention of morbidity and mortality in mechanically ventilated newborn infants. Cochrane Database Syst Rev (2):CD002973

    Google Scholar 

  • Davis PG, Morley CJ, Owen LS (2009) Non-invasive respiratory support of preterm neonates with respiratory distress: continuous positive airway pressure and nasal intermittent positive pressure ventilation. Semin Fetal Neonatal Med 14:14–20

    PubMed  Google Scholar 

  • Deckardt R, Steward DJ (1984) Noninvasive arterial hemoglobin oxygen saturation versus transcutaneous oxygen tension monitoring in the preterm infant. Crit Care Med 12(11):935–939

    CAS  PubMed  Google Scholar 

  • Drummond KJ, Fearnsdale MR, Chee A (1997) Transcutaneous carbon dioxide measurement after craniotomy in spontaneously breathing patients. Neurosurgery 41:361–365

    CAS  PubMed  Google Scholar 

  • Dullenkopf A, Dibernardo S, Berger F et al (2003) Evaluation of a new combined SpO2/PtcCO2 sensor in anaesthetized paediatric patients. Pediatr Anesth 13:777–784

    Google Scholar 

  • Durbin CG Jr, Rostow SK (2002) More reliable oximetry reduces the frequency of arterial blood gas analyses and hastens oxygen weaning after cardiac surgery: a prospective, randomized trial of the clinical impact of a new technology. Crit Care Med 30:1735–1740

    PubMed  Google Scholar 

  • East TD, Morris AH, Wallace CJ et al (1991) A strategy for development of computerized critical care decision support systems. Int J Clin Monit Comput 92:263–269

    Google Scholar 

  • Eberhard P, Schafer R (1980) A sensor for noninvasive monitoring of carbon dioxide. Br J Clin Equip 5:224–226

    Google Scholar 

  • Eberhard P, Mindt W, Kreuzer F (1976) Cutaneous oxygen monitoring in the newborn. Paediatrician 5:335–369

    Google Scholar 

  • Elliott M, Tate R, Page K (2006) Do clinicians know how to use pulse oximetry? A literature review and clinical implications. Aust Crit Care 19(4):139–144

    PubMed  Google Scholar 

  • Emergency Care Research Institute (2003) Next-generation pulse oximetry. Health Devices 32:49–103

    Google Scholar 

  • Englander R, Agostinucci W, Zalneraiti E, Carraccio CL (2006) Teaching residents systems-based practice through a hospital cost-reduction program: a “win-win” situation. Teach Learn Med 18(2):150–152

    PubMed  Google Scholar 

  • Faconi S (1988) Reliability of pulse oximetry in hypoxic infants. J Pediatr 112(3):424–427

    Google Scholar 

  • Fanconi S, Burger R, Maurer H et al (1991) Transcutaneous carbon dioxide pressure for monitoring patients with severe croup. J Pediatr 119:673–674

    Google Scholar 

  • Fischer HS, Roehr CC, Proquitte H, Wauer RR, Schmalisch G (2008) Assessment of volume and leak measurements during CPAP using a neonatal lung model. Physiol Meas 29:95–107

    CAS  PubMed  Google Scholar 

  • Fischer HS, Roehr CC, Proquitte H, Hammer H, Wauer RR, Schmalisch G (2009) Is volume and leak monitoring feasible during nasopharyngeal continuous positive airway pressure in neonates? Intensive Care Med 35:1934–1941

    PubMed  Google Scholar 

  • Fletcher R, Jonson B, Cumming G, Brew J (1981) The concept of deadspace with special reference to the single breath test for carbon dioxide. Br J Anaesth 53:77–88

    CAS  PubMed  Google Scholar 

  • Fowler WS (1948) Lung function studies; the respiratory dead space. Am J Physiol 154:405–416

    CAS  PubMed  Google Scholar 

  • Gallagher SA, Hackett PH (2004) High-altitude illness. Emerg Med Clin North Am 22:329–355

    PubMed  Google Scholar 

  • Gamponia MJ, Babaali H, Yugar F, Gilman RH (1998) Reference values for pulse oximetry at high altitude. Arch Dis Child 78:461–465

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ganter M, Zollinger A (2003) Continuous intravascular blood gas monitoring: development, current techniques, and clinical use of a commercial device. Br J Anaesth 91(3):397–407

    CAS  PubMed  Google Scholar 

  • Geary C, Caskey M, Fonseca R, Malloy M (2008) Decreased incidence of bronchopulmonary dysplasia after early management changes, including surfactant and nasal continuous positive airway pressure treatment at delivery, lowered oxygen saturation goals, and early amino acid administration: a historical cohort study. Pediatrics 121:89–96

    PubMed  Google Scholar 

  • Gittermann MK, Fusch C, Gittermann AR, Regazzoni BM, Moessinger AC (1997) Early nasal continuous positive airway pressure treatment reduces the need for intubation in very low birth weight infants. Eur J Pediatr 156:384–388

    CAS  PubMed  Google Scholar 

  • Giuliano KK, Grant ME (2002) Blood analysis at the point of care: issues in application for use in critically ill patients. AACN Clin Issues 13(2):204–220

    PubMed  Google Scholar 

  • Gøthgen IH, Siggaard-Andersen O, Kokholm G (1990) Variations in the hemoglobin-oxygen dissociation curve in 10079 arterial blood samples. Scand J Clin Lab Invest Suppl 203:87–90

    PubMed  Google Scholar 

  • Gozal D (1997) Nocturnal ventilatory support in patients with cystic fibrosis: comparison with supplemental oxygen. Eur Respir J 10:1999–2003

    CAS  PubMed  Google Scholar 

  • Graham KC, Cvach M (2010) Monitor alarm fatigue: standardizing use of physiological monitors and decreasing nuisance alarms. Am J Crit Care 19(1):28–34

    PubMed  Google Scholar 

  • Gravenstein JS, Jaffe MB, Paulus DA (2004) Capnography- clinical aspects. Cambridge University Press, Cambridge

    Google Scholar 

  • Greenhalgh DG, Warden GD (1992) Transcutaneous oxygen and carbon dioxide measurements for determination of skin graft “take”. J Burn Care Rehabil 13:334–339

    CAS  PubMed  Google Scholar 

  • Grenier B, Verchere E, Mesli A, Dubreuil M, Siao D, Vandendriessche M, Cales J, Maurette P (1999) Capnography monitoring during neurosurgery: reliability in relation to various intraoperative positions. Anesth Analg 88:43–48

    CAS  PubMed  Google Scholar 

  • Griffin J, Terry BE, Burton RK et al (2003) Comparison of end-tidal and transcutaneous measures of carbon dioxide during general anaesthesia in severely obese adults. Br J Anaesth 91:498–501

    CAS  PubMed  Google Scholar 

  • Grmec S (2002) Comparison of three different methods to confirm tracheal tube placement in emergency intubation. Intensive Care Med 28:701–704

    PubMed  Google Scholar 

  • Hackett PH, Roach RC, Hackett PH, Roach RC (2001) High-altitude medicine. In: Auerbach PS (ed) Wilderness medicine. Mosby, Philadelphia, p 5

    Google Scholar 

  • Hagerty JJ, Kleinman ME, Zurakowski D, Lyons AC, Krauss B (2002) Accuracy of a new low-flow sidestream capnography technology in newborns: a pilot study. J Perinatol 22:219–225

    PubMed  Google Scholar 

  • Hannhart B, Haberer JP, Saunier C, Laxenaire MC (1991) Accuracy and precision of fourteen pulse oximeters. Eur Respir J 4:115–119

    CAS  PubMed  Google Scholar 

  • Hansen JE, Jensen RL, Casaburi R, Crapo RO (1989) Comparison of blood gas analyzer biases in measuring tonometered blood and a fluoroca4rbon containing proficiency-testing material. Am Rev Respir Dis 140:403–409

    CAS  PubMed  Google Scholar 

  • Hay WWJ, Brock Way JM, Eyzaguirre M (1989) Neonatal pulse oximetry: accuracy and reliability. Pediatrics 83(5):7–17

    Google Scholar 

  • Hay WW Jr, Rodden DJ, Collins SM, Melara DL, Hale KA, Fashaw LM (2002) Reliability of conventional and new pulse oximetry in neonatal patients. J Perinatol 22(5):360–366

    PubMed  Google Scholar 

  • Henke KG, Dempsey JA, Badr MS, Kowitz JM, Skatrud JB (1991) Effect of sleep-induced increases in upper airway resistance on respiratory muscle activity. J Appl Physiol 70:158–168

    CAS  PubMed  Google Scholar 

  • Herber-Jonat S, von Bismarck P, Freitag-Wolf S, Nikischin W (2008) Limitation of measurements of expiratory tidal volume and expiratory compliance under conditions of endotracheal tube leaks. Pediatr Crit Care Med 9:69–75

    PubMed  Google Scholar 

  • Hess D (1998) Selection of monitoring equipment. In: Tobin MJ (ed) Principles and practices of intensive care monitoring. McGraw-Hill, New York, pp 1469–1480

    Google Scholar 

  • Hess DR (2005) Noninvasive positive-pressure ventilation and ventilator-associated pneumonia. Respir Care 50:924–929

    PubMed  Google Scholar 

  • Holland R, Webb RK, Runciman WB (1993) The Australian Incident Monitoring Study. Oesophageal intubation: an analysis of 2000 incident reports. Anaesth Intensive Care 21:608–610

    CAS  PubMed  Google Scholar 

  • Holmgren D, Sixt R (1992) Transcutaneous and arterial blood gas monitoring during acute asthmatic symptoms in older children. Pediatr Pulmonol 14:80–84

    CAS  PubMed  Google Scholar 

  • Hsia CC (1998) Respiratory function of hemoglobin. N Engl J Med 338:239–247

    CAS  PubMed  Google Scholar 

  • Hubble CL, Gentile MA, Tripp DS, Craig DM, Meliones JN, Cheifetz IM (2000) Deadspace to tidal volume ratio predicts successful extubation in infants and children. Crit Care Med 28:2034–2040

    CAS  PubMed  Google Scholar 

  • Hückstädt T, Foitzik B, Wauer RR, Schmalisch G (2003) Comparison of two different CPAP systems by tidal breathing parameters. Intensive Care Med 29:1134–1140

    PubMed  Google Scholar 

  • Ibrahim ED, McLellan SA, Walsh TS et al (2005) Red blood cell 2,3-diphosphoglycerate concentration and in vivo P50 during early critical illness. Crit Care Med 33:2247–2252

    Google Scholar 

  • Inman SJ, Sibbald WJ, Rutledge FS, Speechley M, Martin CM, Clark BJ (1993) Does implementing pulse oximetry in a critical care unit result in substantial arterial blood gas savings? Chest 104(2):542–546

    CAS  PubMed  Google Scholar 

  • Ip Yam PC, Innes PA, Jackson M et al (1994) Variation in the arterial to end-tidal PCO2 difference during one-lung thoracic anaesthesia. Br J Anaesth 72:21–24

    CAS  PubMed  Google Scholar 

  • Janseens JP, Howarth-Frey C, Chevrolet JC et al (1998) Transcutaneous PCO2 to monitor noninvasive mechanical ventilation in adults. Chest 113:768–773

    Google Scholar 

  • Jennis MS, Peabody JL (1987) Pulse oximetry: an alternative method for the assessment of oxygenation in newborn infants. Pediatrics 79(4):524–528

    CAS  PubMed  Google Scholar 

  • Johns RL, Lindsay WJ, Shephard RH (1969) A system for monitoring pulmonary ventilation. Biomed Sci Instrum 5:119–121

    CAS  PubMed  Google Scholar 

  • Kallet RH, Alonso JA, Pittet JF, Matthay MA (2004) Prognostic value of the pulmonary dead-space fraction during the first 6 days of acute respiratory distress syndrome. Respir Care 49:1008–1014

    PubMed  Google Scholar 

  • Karlberg P, Cook CD, O’Brien D, Cherry RB, Smith CA (1954) Studies of respiratory physiology in newborn infants II. Observations during and after respiratory distress. Acta Paediatr 43:387–411

    Google Scholar 

  • Keenan SP, Sinuff T, Cook DJ, Hill NS (2004) Does noninvasive positive pressure ventilation improve outcome in acute hypoxemic respiratory failure? A systematic review. Crit Care Med 32:2516–2523

    PubMed  Google Scholar 

  • Kellerman AL, Coler CA, Joseph S, Hackman BB (1991) Impact of portable pulse oximetry on arterial blood gas test ordering in an urban emergency department. Ann Emerg Med 20:130–134

    CAS  PubMed  Google Scholar 

  • Kendall J, Reeves B, Clancy M (1998) Point of care testing: randomised controlled trial of clinical outcome. BMJ 316(7137):1052–1057

    CAS  PubMed Central  PubMed  Google Scholar 

  • King T, Simon RH (1987) Pulse oximetry for tapering supplemental oxygen in hospitalized patients. Chest 92:713–716

    CAS  PubMed  Google Scholar 

  • Knapp S, Kofler J, Stoiser B, Thalhammer F, Burgmann H, Posch M, Hofbauer R, Stanzel M, Frass M (1999) The assessment of four different methods to verify tracheal tube placement in the critical care setting. Anesth Analg 88:766–770

    CAS  PubMed  Google Scholar 

  • Kondo T, Matsumoto I, Lanteri CJ, Sly PD (1997) Respiratory mechanics during mechanical ventilation: a model study on the effects of leak around a tracheal tube. Pediatr Pulmonol 24:423–428

    CAS  PubMed  Google Scholar 

  • Kopka A, Wallace E, Reilly G, Binning A (2007) Observational study of perioperative PtcCO2 and SpO2 in non-ventilated patients receiving epidural infusions or patient-controlled analgesia using a single earlobe monitor (TOSCA). Br J Anaesth 99:567–571

    CAS  PubMed  Google Scholar 

  • Kost GJ (1998) Point-of-care testing in intensive care. In: Tobin MJ (ed) Principles and practices of intensive care monitoring. McGraw-Hill, New York, pp 1267–1296

    Google Scholar 

  • Kugelman A, Zeiger-Aginsky D, Bader D, Shoris I, Riskin A (2008) A novel method of distal end-tidal CO2 capnography in intubated infants: comparison with arterial CO2 and with proximal mainstream end-tidal CO2. Pediatrics 122:e1219–e1224

    PubMed  Google Scholar 

  • Lang CJG (1998) Apnea testing guided by continuous transcutaneous monitoring of partial pressure of carbon dioxide. Crit Care Med 26:868–872

    CAS  PubMed  Google Scholar 

  • Lawless S (1994) Crying wolf: false alarms in a pediatric intensive care unit. Crit Care Med 22:981–985

    CAS  PubMed  Google Scholar 

  • Lum L, Saville A, Venkataraman ST (1998) Accuracy of physiologic deadspace measurement in intubated pediatric patients using a metabolic monitor: comparison with the Douglas bag method. Crit Care Med 26:760–764

    CAS  PubMed  Google Scholar 

  • Macnab AJ, Grant G, Stevens K, Gagnon F, Noble R, Sun C (2003) Cost: benefit of point-of-care blood gas analysis vs. laboratory measurement during stabilization prior to transport. Prehosp Disaster Med 18(1):24–28

    PubMed  Google Scholar 

  • Mahmoud RA, Fischer HS, Proquitte H, Shalaby HM, Schmalisch G (2009) Relationship between endotracheal tube leakage and under-reading of tidal volume in neonatal ventilators. Acta Paediatr 98:1116–1122

    CAS  PubMed  Google Scholar 

  • Mahmoud RA, Roehr CC, Schmalisch G (2011) Current methods of non-invasive ventilatory support for neonates. Paediatr Respir Rev 12:196–205

    PubMed  Google Scholar 

  • Mahutte CK (1998) Continuous intravascular and on-demand extravascular arterial blood gas monitoring. In: Tobin MJ (ed) Principles and practices of intensive care monitoring. McGraw-Hill, New York, pp 243–259

    Google Scholar 

  • McBride DS, Johnson JO, Tobias JD (2002) Noninvasive carbon dioxide monitoring during neurosurgical procedures in adults: end-tidal versus transcutaneous techniques. South Med J 95:870–874

    PubMed  Google Scholar 

  • McBride ME, Berkenbosch JW, Tobias JD (2004) Transcutaneous carbon dioxide monitoring during diabetic ketoacidosis in children and adolescents. Paediatr Anaesth 14:167–171

    PubMed  Google Scholar 

  • McCormack JG, Kelly KP, Wedgwood J, Lyon R (2008) The effects of different analgesic regimens on transcutaneous CO2 after major surgery. Anaesthesia 63:814–821

    CAS  PubMed  Google Scholar 

  • McDonald MJ, Montgomery VL, Cerrito P, Parrish CJ, Boland KA, Sullivan JE (2002) Comparison of end-tidal CO2 and PaCO2 in children receiving mechanical ventilation. Pediatr Crit Care Med 3:244–249

    PubMed  Google Scholar 

  • McSwain SD, Hamel DS, Smith PB, Gentile MA, Srinivasan S, Meliones JN, Cheifetz IM (2010) End-tidal and arterial carbon dioxide measurements correlate across all levels of physiologic dead space. Respir Care 55:288–293

    PubMed Central  PubMed  Google Scholar 

  • Miller TL, Blackson TJ, Shaffer TH, Touch SM (2004) Tracheal gas insufflation-augmented continuous positive airway pressure in a spontaneously breathing model of neonatal respiratory distress. Pediatr Pulmonol 38:386–395

    PubMed  Google Scholar 

  • Moller JT, Johannessen NW, Espersen K (1993a) Randomized evaluation of pulse oximetry in 20,802 patients: II. Perioperative events and postoperative complications. Anesthesiology 78(3):445–453

    CAS  PubMed  Google Scholar 

  • Moller JT, Svennild I, Johannessen NW, Jensen PF, Espersen K, Gravenstein JS et al (1993b) Perioperative monitoring with pulse oximetry and late postoperative cognitive dysfunction. Br J Anaesth 7I(3):340–347

    Google Scholar 

  • Morley CJ, Davis PG, Doyle LW, Brion LP, Hascoet JM, Carlin JB (2008) Nasal CPAP or intubation at birth for very preterm infants. N Engl J Med 358:700–708

    CAS  PubMed  Google Scholar 

  • Morris RW, Nairn M, Torda TA (1989) A comparison of fifteen pulse oximeters. Part I: a clinical comparison; part II: a test of performance under conditions of poor perfusion. Anaesth Intensive Care 17(2):62–73

    CAS  PubMed  Google Scholar 

  • Mosteller F, Institute of Medicine (1985) Assessing medical technologies. National Academy Press, Washington, pp vii–ix

    Google Scholar 

  • Napolitano LM (1999) Capnography in critical care: accurate assessment of ARDS therapy? Crit Care Med 27:862–863

    CAS  PubMed  Google Scholar 

  • Nassabeh-Montazami S, Abubakar KM, Keszler M (2009) The impact of instrumental dead-space in volume-targeted ventilation of the extremely low birth weight (ELBW) infant. Pediatr Pulmonol 44:128–133

    PubMed  Google Scholar 

  • Nelson NM, Prod’hom LS, Cherry RB, Lipsitz PJ, Smith CA (1962) Pulmonary function in the newborn infant: 1. Methods: ventilation and gaseous metabolism. Pediatrics 30:963–974

    CAS  PubMed  Google Scholar 

  • Neufeld GR, Schwardt JD, Gobran SR, Baumgardner JE, Schreiner MS, Aukburg SJ, Scherer PW (1992) Modelling steady state pulmonary elimination of He, SF6 and CO2: effect of morphometry. Respir Physiol 88:257–275

    CAS  PubMed  Google Scholar 

  • Nickerson BG, Sarkisian C, Tremper KK (1988) Bias and precision of pulse oximeters and arterial oximeters. Chest 93:515–517

    CAS  PubMed  Google Scholar 

  • Niehoff J, Delbuericio C, LaMorte W et al (1988) Efficacy of pulse oximetry and capnometry I postoperative ventilatory weaning. Crit Care Med 16:701–705

    CAS  PubMed  Google Scholar 

  • Niermeyer S, Shaffer EM, Thilo E, Corbin C, Grindlay M (1993) Arterial oxygenation and pulmonary arterial pressure in healthy neonates and infants at high altitude. J Pediatr 123:767–772

    CAS  PubMed  Google Scholar 

  • Niermeyer S, Yang P, Shanmina, Drolkar, Zhuang J, Moore LG (1995) Arterial oxygen saturation in Tibetan and Han infants born at Lhasa, Tibet. N Engl J Med 333:1248–1252

    Google Scholar 

  • Nosovitch MA, Johnson JO, Tobias JD (2002) Noninvasive intraoperative monitoring of carbon dioxide in children: end-tidal versus transcutaneous techniques. Paediatr Anaesth 12:48–52

    PubMed  Google Scholar 

  • Nuckton TJ, Alonso JA, Kallet RH, Daniel BM, Pittet JF, Eisner MD, Matthay MA (2002) Pulmonary dead-space fraction as a risk factor for death in the acute respiratory distress syndrome. N Engl J Med 346:1281–1286

    PubMed  Google Scholar 

  • O’Connell DA, Seikaly H, Harris JR (2008) Central laboratory versus point of care testing in intraoperative monitoring of parathyroid hormone levels: cost comparison. J Otolaryngol Head Neck Surg 37(1):91–97

    PubMed  Google Scholar 

  • Ochroch EA, Russell MW, Hanson WC 3rd, Devine GA, Cucchiara AJ, Weiner MG, Schwartz SJ (2006) The impact of continuous pulse oximetry monitoring on intensive care unit admissions from a postsurgical care floor. Anesth Analg 102(3):868–875

    PubMed  Google Scholar 

  • Oshibuchi M, Cho S, Hara T et al (2003) A comparative evaluation of transcutaneous and end-tidal measurements of CO2 in thoracic anesthesia. Anesth Analg 97:776–779

    PubMed  Google Scholar 

  • Paiva R, Krivec U, Aubertin G et al (2009) Carbon dioxide monitoring during long-term non-invasive respiratory support in children. Intensive Care Med 35:1068–1074

    PubMed  Google Scholar 

  • Pascucci RC, Schena JA, Thompson JE (1989) Comparison of a sidestream and mainstream capnometer in infants. Crit Care Med 17:560–562

    CAS  PubMed  Google Scholar 

  • Pedersen T, Møller AM, Hovhannisyan K (2009) Pulse oximetry for perioperative monitoring. Cochrane Database Syst Rev (4):CD002013

    Google Scholar 

  • Peter JA, Hodgkin JE, Collier CR (1991) Blood gas analysis and acid–base physiology. In: Burton GG, Hodgkin JE, Ward JJ (eds) Respiratory care: a guide to clinical practice, 3rd edn. JP Lippincott, New York, pp 181–210

    Google Scholar 

  • Petterson MT, Begnoche VL, Graybeal JM (2007) The effect of motion on pulse oximetry and its clinical significance. Anesth Analg 105(6 suppl):S78–S84

    PubMed  Google Scholar 

  • Phan CQ, Tremper KK, Lee SE, Barker SJ (1987) Noninvasive monitoring of carbon dioxide: a comparison of the partial pressure of transcutaneous and end-tidal carbon dioxide with the partial pressure of arterial carbon dioxide. J Clin Monit 3:149–154

    CAS  PubMed  Google Scholar 

  • Pillow JJ, Hillman N, Moss TJ, Polglase G, Bold G, Beaumont C, Ikegami M, Jobe AH (2007) Bubble continuous positive airway pressure enhances lung volume and gas exchange in preterm lambs. Am J Respir Crit Care Med 176:63–69

    PubMed Central  PubMed  Google Scholar 

  • Popovich DM, Richiuso N, Danek G (2004) Pediatric health care providers’ knowledge of pulse oximetry. Pediatr Nurs 30(1):14–20

    PubMed  Google Scholar 

  • Praud JP, Carofilis A, Bridey F et al (1989) Accuracy of two-wavelength pulse oximetry in neonates and infants. Pediatr Pulmonol 6(3):180–182

    CAS  PubMed  Google Scholar 

  • Proquitte H, Krause S, Rudiger M, Wauer RR, Schmalisch G (2004) Current limitations of volumetric capnography in surfactant-depleted small lungs. Pediatr Crit Care Med 5:75–80

    PubMed  Google Scholar 

  • Rabe H, Alvarez RF, Whitfield T, Lawson F, Jungmann H (2010) Spectroscopic noninvasive measurement of hemoglobin compared with capillary and venous values in neonates. Neonatology 98(1):1–5, Epub 2009 Nov 25

    CAS  PubMed  Google Scholar 

  • Ramanathan R, Durand M, Larrazabal C (1987) Pulse oximetry in very low birth weight infants with acute and chronic lung disease. Pediatrics 79(4):612–617

    CAS  PubMed  Google Scholar 

  • Rauch DA, Ewig J, Benoit P et al (1999) Exploring intermittent transcutaneous CO2 monitoring. Crit Care Med 27:2358–2360

    CAS  PubMed  Google Scholar 

  • Ream RS, Schreiner MS, Neff JD, McRae KM, Jawad AF, Scherer PW, Neufeld GR (1995) Volumetric capnography in children. Influence of growth on the alveolar plateau slope. Anesthesiology 82:64–73

    CAS  PubMed  Google Scholar 

  • Regnis JA, Piper AJ, Henke KG, Parker S, Bye PT, Sullivan CE (1994) Benefits of nocturnal nasal CPAP in patients with cystic fibrosis. Chest 106:1717–1724

    CAS  PubMed  Google Scholar 

  • Reid CW, Martineau RJ, Miller DR et al (1992) A comparison of transcutaneous, end-tidal and arterial measurements of carbon dioxide during general anesthesia. Can J Anaesth 39:31–36

    CAS  PubMed  Google Scholar 

  • Riou Y, Leclerc F, Neve V, Dupuy L, Noizet O, Leteurtre S, Sadik A (2004) Reproducibility of the respiratory dead space measurements in mechanically ventilated children using the CO2SMO monitor. Intensive Care Med 30:1461–1467

    CAS  PubMed  Google Scholar 

  • Roizen MF, Schreider B, Austin W, Carter C, Polk S (1993) Pulse oximetry, capnography, and blood gas measurements: reducing cost and improving the quality of care with technology. J Clin Monit 9(4):237–240

    CAS  PubMed  Google Scholar 

  • Rozycki HJ, Sysyn GD, Marshall MK, Malloy R, Wiswell TE (1998) Mainstream end-tidal carbon dioxide monitoring in the neonatal intensive care unit. Pediatrics 101:648–653

    CAS  PubMed  Google Scholar 

  • Russell GB, Graybeal JM (1994) Reliability of the arterial to end-tidal carbon dioxide gradient in mechanically ventilated patients with multisystem trauma. J Trauma 36:317–322

    CAS  PubMed  Google Scholar 

  • Russell GB, Graybeal JM, Strout JC (1990) Stability of arterial to end-tidal carbon dioxide gradients during postoperative cardiorespiratory support. Can J Anaesth 37:560–566

    CAS  PubMed  Google Scholar 

  • Sahni R, Gupta A, Ohira-Kist K, Rosen TS (2003) Motion resistant pulse oximetry in neonates. Arch Dis Child Fetal Neonatal Ed 88(6):F505–F508

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salyer JW (2003) Neonatal and pediatric pulse oximetry. Respir Care 48(4):386–396

    PubMed  Google Scholar 

  • Salyer JW, Chatburn RL, Dolcini DM (1989) Measured versus calculated oxygen saturation in a population of pediatric intensive care patients. Respir Care 34:342–348

    Google Scholar 

  • Sanders AB, Kern KB, Otto CW, Milander MM, Ewy GA (1989) End-tidal carbon dioxide monitoring during cardiopulmonary resuscitation. A prognostic indicator for survival. JAMA 262:1347–1351

    CAS  PubMed  Google Scholar 

  • Schettino GP, Chatmongkolchart S, Hess DR, Kacmarek RM (2003) Position of exhalation port and mask design affect CO2 rebreathing during noninvasive positive pressure ventilation. Crit Care Med 31:2178–2182

    PubMed  Google Scholar 

  • Schmalisch G (2004) Time and volumetric capnography in the neonate. In: Gravenstein JS, Jaffe MB, Paulus DA (eds) Capnography, clinical aspects. Cambridge University Press, Cambridge, pp 81–100

    Google Scholar 

  • Schmalisch G, Proquitte H, Roehr CC, Wauer RR (2006) The effect of changing ventilator settings on indices of ventilation inhomogeneity in small ventilated lungs. BMC Pulm Med 6:20

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schmalisch G, Fischer H, Roehr CC, Proquitte H (2009) Comparison of different techniques to measure air leaks during CPAP treatment in neonates. Med Eng Phys 31:124–130

    CAS  PubMed  Google Scholar 

  • Schmalisch G, Al-Gaaf S, Proquitte H, Roehr CC (2012) Effect of endotracheal tube leak on capnographic measurements in a ventilated neonatal lung model. Physiol Meas 33:1–11

    Google Scholar 

  • Schwardt JD, Gobran SR, Neufeld GR, Aukburg SJ, Scherer PW (1991) Sensitivity of CO2 washout to changes in acinar structure in a single-path model of lung airways. Ann Biomed Eng 19:679–697

    CAS  PubMed  Google Scholar 

  • Scuderi PE, MacGreggor DA, Bowton DL et al (1993) Performance characteristics and interanalyzer variability for PO2 measurement using tonometered human blood. Am Rev Respir Dis 147:1354–1359

    CAS  PubMed  Google Scholar 

  • Severinghaus JW (1960) Methods of measurement of blood and gas carbon dioxide during anesthesia. Anesthesiology 21:711–726

    Google Scholar 

  • Severinghaus JW (1982) Transcutaneous blood gas analysis. Respir Care 27:152–159

    Google Scholar 

  • Severinghaus JW (1993) History and recent developments in pulse oximetry. Scand J Clin Invest 53(Suppl 214):105–111

    Google Scholar 

  • Severinghaus JW, Bradley AF Jr (1958) Electrodes for blood PO2 and PCO2 determinations. J Appl Physiol 13:515–520

    CAS  PubMed  Google Scholar 

  • Severinghaus JW, Naifeh KH, Koh SO (1989) Errors in 14 pulse oximeters during profound hypoxemia. J Clin Monit 5:72–81

    CAS  PubMed  Google Scholar 

  • Shapiro RS, Kacmarek RM (1998) Monitoring of the mechanically ventilated patient. In: Marini JJ, Slutsky AS (eds) Physiological basis of ventilatory support. Marcel Dekker, Inc, Basel, pp 709–782

    Google Scholar 

  • Siebig S, Kuhls S, Imhoff M, Gather U, Schölmerich J, Wrede CE (2010) Intensive care unit alarms–how many do we need? Crit Care Med 38(2):451–456

    PubMed  Google Scholar 

  • Sivan Y, Eldadah MK, Cheah TE et al (1992) Estimation of arterial carbon dioxide by end-tidal and transcutaneous PCO2 measurements in ventilated children. Pediatr Pulmonol 12:153–157

    CAS  PubMed  Google Scholar 

  • Skimming JW, Banner MJ, Spalding HK, Jaeger MJ, Burchfield DJ, Davenport PW (2001) Nitric oxide inhalation increases alveolar gas exchange by decreasing deadspace volume. Crit Care Med 29:1195–1200

    CAS  PubMed  Google Scholar 

  • Sola A, Salden YP, Favareto V (2008) Clinical practices in neonatal oxygenation: where have we failed? What can we do? J Perinatol 28:S28–S34

    PubMed  Google Scholar 

  • Solimano AJ, Smyth JA, Mann TK, Albersheim SG, Lockitch G (1986) Pulse oximetry advantages in infants with bronchopulmonary dysplasia. Pediatrics 78(5):844–849

    CAS  PubMed  Google Scholar 

  • Southall DP, Bignall S, Stebbens VA et al (1987) Pulse oximetry and transcutaneous arterial oxygen measurements in neonatal and paediatric intensive care. Arch Dis Child 62:882–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stapleton FB, Hendricks J, Hagan P, DelBeccaro M (2009) Modifying the Toyota Production System for continuous performance improvement in an academic children’s hospital. Pediatr Clin North Am 56(4):799–813

    PubMed  Google Scholar 

  • Storre JH, Steurer B, Kabitz HJ et al (2007) Transcutaneous PCO2 monitoring during initiation of non-invasive ventilation. Chest 132:1810–1816

    PubMed  Google Scholar 

  • Stow RW, Randall BF (1954) Electrochemical measurement of the PCO2 of blood. Am J Physiol 179:678–681

    Google Scholar 

  • Subhi R, Smith K, Duke T (2009) When should oxygen be given to children at high altitude? A systematic review to define altitude-specific hypoxaemia. Arch Dis Child 94(1):6–10

    PubMed  Google Scholar 

  • Sum-Ping ST, Mehta MP, Anderton JM (1989) A comparative study of methods of detection of esophageal intubation. Anesth Analg 69:627–632

    CAS  PubMed  Google Scholar 

  • Taenzer AH, Pyke JB, McGrath SP, Blike GT (2010) Impact of pulse oximetry surveillance on rescue events and intensive care unit transfers: a before-and-after concurrence study. Anesthesiology 112(2):282–287

    PubMed  Google Scholar 

  • Tang Y, Turner MJ, Baker AB (2005) Effects of lung time constant, gas analyser delay and rise time on measurements of respiratory dead-space. Physiol Meas 26:1103–1114

    PubMed  Google Scholar 

  • Taskar V, John J, Larsson A, Wetterberg T, Jonson B (1995) Dynamics of carbon dioxide elimination following ventilator resetting. Chest 108:196–202

    CAS  PubMed  Google Scholar 

  • Tatevossian RG, Wo CCJ, Velmajos GC et al (2000) Transcutaneous oxygen and CO2 as early warning of tissue hypoxia and hemodynamic shock in critically ill emergency patients. Crit Care Med 28:2248–2253

    CAS  PubMed  Google Scholar 

  • Taylor MB, Whitman JG (1988) The accuracy of pulse oximeters: a comparative clinical evaluation of five pulse oximeters. Anesthesia 43:229–232

    CAS  Google Scholar 

  • Teoh L, Epstein A, Williamson B, Morton J, Papadopoulos J, Teng A (2003) Medical staff’s knowledge of pulse oximetry: a prospective survey conducted in a tertiary children’s hospital. J Paediatr Child Health 39:618–622

    CAS  PubMed  Google Scholar 

  • Thamrin C, Latzin P, Sauteur L, Riedel T, Hall GL, Frey U (2007) Deadspace estimation from CO2 versus molar mass measurements in infants. Pediatr Pulmonol 42:920–927

    CAS  PubMed  Google Scholar 

  • Thilo EH, Park-Moore B, Berman ER, Carson BS (1991) Oxygen saturation by pulse oximetry in healthy infants at an altitude of 1610 m (5280 ft). Am J Dis Child 145:1137–1140

    CAS  PubMed  Google Scholar 

  • Thomas FO, Hoffman TL, Handrahan DL, Crapo RO, Snow G (2009) The measure of treatment agreement between portable and laboratory blood gas measurements in guiding protocol-driven ventilator management. J Trauma 67(2):303–313

    PubMed  Google Scholar 

  • Thompson D, Wolf G, Spear S (2003) Driving improvement in patient care: lessons from Toyota. J Nurs Adm 33(11):585–595

    PubMed  Google Scholar 

  • Tingay DG, Stewart MJ, Morley CJ (2005) Monitoring of end tidal carbon dioxide and transcutaneous carbon dioxide during neonatal transport. Arch Dis Child Fetal Neonatal Ed 90:F523–F526

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tinmouth A, Fergusson D, Yee IC, Hébert PC, ABLE Investigators; Canadian Critical Care Trials Group (2006) Clinical consequences of red cell storage in the critically ill. Transfusion 46(11):2014–2027

    PubMed  Google Scholar 

  • Tirosh E, Bilker A, Bader D, Cohen A (2001) Capnography in spontaneously breathing preterm and term infants. Clin Physiol 21:150–154

    CAS  PubMed  Google Scholar 

  • Tobias JD (2001) Transcutaneous carbon dioxide measurement during apnea testing in pediatric patients. J Intensive Care Med 16:76–78

    Google Scholar 

  • Tobias JD (2003) Noninvasive carbon dioxide monitoring during one-lung ventilation: end-tidal versus transcutaneous techniques. J Cardiothorac Vasc Anesth 17:306–308

    PubMed  Google Scholar 

  • Tobias JD (2009) Transcutaneous carbon dioxide monitoring in infants and children. Pediatr Anesth 19:434–444

    Google Scholar 

  • Tobias JD, Meyer DJ (1997) Noninvasive monitoring of carbon dioxide during respiratory failure in toddlers and infants: end-tidal versus transcutaneous carbon dioxide. Anesth Analg 85:55–58

    CAS  PubMed  Google Scholar 

  • Tobias JD, Wilson WR Jr, Meyer DJ (1999) Transcutaneous monitoring of carbon dioxide tension after cardiothoracic surgery in infants and children. Anesth Analg 88:531–534

    CAS  PubMed  Google Scholar 

  • Tobias JD, Russo P, Russo J (2006) An evaluation of acid–base changes following aortic cross-clamping using transcutaneous carbon dioxide monitoring. Pediatr Cardiol 27:585–588

    CAS  PubMed  Google Scholar 

  • Torres A Jr, Skender KM, Wohrley JD et al (2004) Pulse oximetry in children with congenital heart disease: effects of cardiopulmonary bypass and cyanosis. J Intensive Care Med 19:229–234

    PubMed  Google Scholar 

  • Tremper KK, Shoemaker WC, Shippy CR, Nolan LS (1981) Transcutaneous pCO2 monitoring on adult patients in the ICU and the operating room. Crit Care Med 9:752–755

    CAS  PubMed  Google Scholar 

  • Tschupp A, Fanconi S (2003) A combined ear sensor for pulse oximetry and carbon dioxide tension monitoring: accuracy in critically ill children. Anesth Analg 96:82–84

    CAS  PubMed  Google Scholar 

  • Van de Louw A, Cracco C, Cerf C et al (2001) Accuracy of pulse oximetry in the intensive care unit. Intensive Care Med 27:1606–1613

    PubMed  Google Scholar 

  • Wagner AE, Gaynor JS, Dunlop CI, Allen SL, Demme WC (1998) Monitoring adequacy of ventilation by capnometry during thoracotomy in dogs. J Am Vet Med Assoc 212:377–379

    CAS  PubMed  Google Scholar 

  • Wahba RW, Tessler MJ (1996) Misleading end-tidal CO2 tensions. Can J Anaesth 43:862–866

    CAS  PubMed  Google Scholar 

  • Walsh MC, Noble LM, Carlo WA, Martin RJ (1987) Relationship of pulse oximetry to arterial oxygen tension in infants. Crit Care Med 15:1102

    CAS  PubMed  Google Scholar 

  • Walsh TS, McArdle F, McLellan SA et al (2004) Does the storage time of transfused red blood cells influence regional or global indexes of tissue oxygenation in anemic critically ill patients? Crit Care Med 32(2):364–371

    PubMed  Google Scholar 

  • Watcha MF, Connor MT, Hing AV (1989) Pulse oximetry in methemoglobinemia. Am J Dis Child 143(7):845–847

    CAS  PubMed  Google Scholar 

  • Wennergan G, Engstrom I, Bjure J (1986) Transcutaneous oxygen and carbon dioxide levels and a clinical symptom scale for monitoring the acute asthmatic state in infants and young children. Acta Paediatr Scand 75:465–469

    Google Scholar 

  • Wenzel U, Rudiger M, Wagner MH, Wauer RR (1999a) Utility of deadspace and capnometry measurements in determination of surfactant efficacy in surfactant-depleted lungs. Crit Care Med 27:946–952

    CAS  PubMed  Google Scholar 

  • Wenzel U, Wauer RR, Schmalisch G (1999b) Comparison of different methods for dead space measurements in ventilated newborns using CO2-volume plot. Intensive Care Med 25:705–713

    CAS  PubMed  Google Scholar 

  • Wilkinson AR, Phibbs RH, Heilbron DC, Gregory GA, Versmold HT (1980) In vivo oxygen dissociation curves in transfused and untransfused newborns with cardiopulmonary disease. Am Rev Respir Dis 122(4):629–634

    CAS  PubMed  Google Scholar 

  • Wong L, Hamilton R, Palayiwa E, Hahn C (1998) A real-time algorithm to improve the response time of a clinical multigas analyser. J Clin Monit Comput 14:441–446

    CAS  PubMed  Google Scholar 

  • Workie FA, Rais-Bahrami K, Short BL (2005) Clinical use of new-generation pulse oximeters in the neonatal intensive care unit. Am J Perinatol 22(7):357–360

    PubMed  Google Scholar 

  • Wouters PF, Gehring H, Meyfroidt G et al (2002a) Accuracy of pulse oximeters: the European multi-center trial. Anaesth Analg 94:S13–S16

    Google Scholar 

  • Wouters PF, Gehring H, Meyfroit G et al (2002b) Accuracy of pulse oximeters: the European multi-center trial. Anesth Analg 94(1 suppl):S13–S16

    PubMed  Google Scholar 

  • Wu CH, Chou HC, Hsieh WS, Chen WK, Huang PY, Tsao PN (2003) Good estimation of arterial carbon dioxide by end-tidal carbon dioxide monitoring in the neonatal intensive care unit. Pediatr Pulmonol 35:292–295

    PubMed  Google Scholar 

  • Zaugg M, Lucchinetti E, Zalunardo MP et al (1998) Substantial changes in arterial blood gases during thoracoscopic surgery can be missed by conventional intermittent laboratory blood gas analyses. Anesth Analg 87:647–653

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ira M. Cheifetz MD, FCCM, FAARC .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cheifetz, I.M., Salyer, J., Schmalisch, G., Tobias, J.D. (2015). Classical Respiratory Monitoring. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_12

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics