Skip to main content

Respiratory Mechanics in the Mechanically Ventilated Patient

  • Chapter
  • First Online:
Pediatric and Neonatal Mechanical Ventilation

Abstract

Infants and young children have a number of anatomical reasons and physiological reasons for making accurate measurement of respiratory mechanics in the intensive care unit. Despite advances in the measurement of respiratory mechanics in non-intubated infants, these advances have been slow to be adapted to intubated patients due to technical limitations. Thus, the major role of lung function testing in the ICU has been limited to the research arena. However, despite these limitations it is essential the person caring for the intubated pediatric patient have an in-depth understanding of the respiratory mechanics involved with the use of a positive pressure ventilator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agostini E, Hyatt RE (1986) Static behaviour of the respiratory system. In: Geiger SR (ed) Handbook of physiology. American Physiological Society, Bethesda, pp 113–130

    Google Scholar 

  • Albaiceta GM, Piacentini E, Villagra A, Lopez-Aguilar J, Taboada F, Blanch L (2003) Application of continuous positive airway pressure to trace static pressure-volume curves of the respiratory system. Crit Care Med 31:2514–2519

    PubMed  Google Scholar 

  • Albaiceta GM, Taboada F, Parra D, Luyando LH, Calvo J, Menendez R, Otero J (2004) Tomographic study of the inflection points of the pressure-volume curve in acute lung injury. Am J Respir Crit Care Med 170:1066–1072

    PubMed  Google Scholar 

  • Albaiceta GM, Luyando LH, Parra D, Menendez R, Calvo J, Pedreira PR, Taboada F (2005) Inspiratory vs. expiratory pressure-volume curves to set end-expiratory pressure in acute lung injury. Intensive Care Med 31:1370–1378

    PubMed  Google Scholar 

  • Albaiceta GM, Blanch L, Lucangelo U (2008) Static pressure-volume curves of the respiratory system: were they just a passing fad? Curr Opin Crit Care 14:80–86

    PubMed  Google Scholar 

  • Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR (1998) Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med 338:347–354

    CAS  PubMed  Google Scholar 

  • ARDSNet (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. The Acute Respiratory Distress Syndrome Network. N Engl J Med 342:1301–1308

    Google Scholar 

  • Asher MI, Coates AL, Collinge JM, Milic-Emili J (1982) Measurement of pleural pressure in neonates. J Appl Physiol 52:491–494

    CAS  PubMed  Google Scholar 

  • Banner MJ (1994) Work of breathing. Crit Care Med 22(3):5515–5523

    Google Scholar 

  • Bates JH, Irvin CG (2002) Time dependence of recruitment and derecruitment in the lung: a theoretical model. J Appl Physiol 93:705–713

    PubMed  Google Scholar 

  • Bates JH, Turner MJ, Lanteri CJ, Jonson B, Sly PD (1996) Measurement of flow and volume. In: Stocks J, Sly PD, Tepper RS, Morgan WJ (eds) Infant respiratory function testing. Wiley-Liss, New York, pp 81–116

    Google Scholar 

  • Baydur A, Behrakis P, Zin WA et al (1982) A simple method for assessing the validity of the esophageal balloon technique. Am Rev Respir Dis 126:788–791

    CAS  PubMed  Google Scholar 

  • Beardsmore CS, Godfrey S, Shani N, Maayan C, Bar-Yishay E (1986) Airway resistance measurements throughout the respiratory cycle in infants. Respiration 49:81–93

    CAS  PubMed  Google Scholar 

  • Bellemare F, Wright D, Lavigne CM et al (1983) Effect of tension and timing of contraction on blood flow of the diaphragm. J Appl Physiol 54:1597–1606

    CAS  PubMed  Google Scholar 

  • Benditt JO (2005) Esophageal and gastric pressure measurements. Respir Care 50:68–75

    PubMed  Google Scholar 

  • Blanch L, Lucangelo U, Lopez-Aguilar J (2009) Pressure-volume curves and ventilator tuning in acute respiratory distress syndrome. Pediatr Crit Care Med 10:532–533

    PubMed  Google Scholar 

  • Borges JB, Okamoto VN, Matos GF, Caramez MP, Arantes PR, Barros F, Souza CE, Victorino JA, Kacmarek RM, Barbas CS, Carvalho CR, Amato MB (2006) Reversibility of lung collapse and hypoxemia in early acute respiratory distress syndrome. Am J Respir Crit Care Med 174:268–278

    PubMed  Google Scholar 

  • Braun NMT, Faulkner J, Hughes RL (1983) When should respiratory muscle be exercised? Chest 84:76–84

    Google Scholar 

  • Brazelton TB III, Watson KF, Murphy M, Al-Khadra E, Thompson JE, Arnold JH (2001) Identification of optimal lung volume during high-frequency oscillatory ventilation using respiratory inductive plethysmography. Crit Care Med 29:2349–2359

    PubMed  Google Scholar 

  • Brower RG, Lanken PN, MacIntyre N, Matthay MA, Morris A, Ancukiewicz M, Schoenfeld D, Thompson BT (2004) Higher versus lower positive end-expiratory pressures in patients with the acute respiratory distress syndrome. N Engl J Med 351:327–336

    PubMed  Google Scholar 

  • Brown K, Sly PD, Milic-Emili J, Bates JHT (1989) Evaluation of the flow-volume loop as an intra-operative monitor of respiratory mechanics in infants. Pediatr Pulmonol 6:8–13

    CAS  PubMed  Google Scholar 

  • Brunner JX, Laubscher TP, Banner MJ, Iotti G, Braschi A (1995) Crit Care Med 23(6):1117–1122

    CAS  PubMed  Google Scholar 

  • Campbell E (1958) The respiratory muscles and the mechanics of breathing. Lloyd-Luke, London

    Google Scholar 

  • Caramez MP, Kacmarek RM, Helmy M, Miyoshi E, Malhotra A, Amato MB, Harris RS (2009) A comparison of methods to identify open-lung PEEP. Intensive Care Med 35:740–747

    PubMed Central  PubMed  Google Scholar 

  • Carmack J, Torres A, Anders M, Wilson S, Holt S, Heulitt MJ (1995) Comparison of work of breathing in spontaneous breathing young lambs during continuous positive airway pressure and pressure support ventilation with and without flow triggering utilizing the servo 300 ventilator. Respir Care 40:28–34

    Google Scholar 

  • Chang HY, Claure N, D’Ugard C, Torres J, Nwajei P, Bancalari E (2011) Effects of synchronization during nasal ventilation in clinically stable preterm infants. Pediatr Res 69:84–89

    PubMed  Google Scholar 

  • Chatmongkolchart S, Williams P, Hess DR, Kacmarek RM (2001) Evaluation of inspiratory rise time and inspiration termination criteria in new-generation mechanical ventilators: a lung model study. Respir Care 46(7):666–677

    CAS  PubMed  Google Scholar 

  • Civetta JM (1993) Nosocomial respiratory failure. Crit Care Med 21:171–173

    CAS  PubMed  Google Scholar 

  • Coates AL, Davis GM, Vallinis P, Outerbridge EW (1989) Liquid-filled esophageal catheter for measuring pleural pressure in preterm neonates. J Appl Physiol 67:889–893

    CAS  PubMed  Google Scholar 

  • Costa EL, Borges JB, Melo A, Suarez-Sipmann F, Toufen C Jr, Bohm SH, Amato MB (2009) Bedside estimation of recruitable alveolar collapse and hyperdistension by electrical impedance tomography. Intensive Care Med 35:1132–1137

    PubMed  Google Scholar 

  • Crotti S, Mascheroni D, Caironi P, Pelosi P, Ronzoni G, Mondino M, Marini JJ, Gattinoni L (2001) Recruitment and derecruitment during acute respiratory failure: a clinical study. Am J Respir Crit Care Med 164:131–140

    CAS  PubMed  Google Scholar 

  • Dall’Ava-Santucci J, Armaganidis A, Brunet F, Dhainaut JF, Chelucci GL, Monsallier JF, Lockhart A (1988) Causes of error of respiratory pressure-volume curves in paralyzed subjects. J Appl Physiol 64:42–49

    PubMed  Google Scholar 

  • Dargaville PA, Rimensberger PC, Frerichs I (2010) Regional tidal ventilation and compliance during a stepwise vital capacity manoeuvre. Intensive Care Med 36:1953–1961

    PubMed  Google Scholar 

  • Dassieu G, Brochard L, Agudze E, Patkaï J, Janaud JC, Danan C (1998) Continuous tracheal gas insufflation enables a volume reduction strategy in hyaline membrane disease: technical aspects and clinical results. Intensive Care Med 24(10):1076–1082

    CAS  PubMed  Google Scholar 

  • Davis GM, Stocks J, Gerhardt T, Abbasi S, Gappa M (1996) Measurement of Dynamic Lung Mechanics in Infants. In: Stocks J et al (eds) Infant respiratory function testing, vol 1. Wiley-Liss, New York, pp 269–271. http://books.google.ch/books/about/Infant_Respiratory_Function_Testing.html?id=3e8Kj1rFNO4C&safe=on&redir_esc=y

  • De Jaegere A, van Veenendaal MB, Michiels A, van Kaam AH (2006) Lung recruitment using oxygenation during open lung high-frequency ventilation in preterm infants. Am J Respir Crit Care Med 174:639–645

    PubMed  Google Scholar 

  • Denison DM, Morgan MD, Millar AB (1986) Estimation of regional gas and tissue volumes of the lung in supine man using computed tomography. Thorax 41:620–628

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dirocco JD, Carney DE, Nieman GF (2007) Correlation between alveolar recruitment/derecruitment and inflection points on the pressure-volume curve. Intensive Care Med 33:1204–1211

    PubMed  Google Scholar 

  • Downie JM, Nam AJ, Simon BA (2004) Pressure-volume curve does not predict steady-state lung volume in canine lavage lung injury. Am J Respir Crit Care Med 169:957–962

    PubMed  Google Scholar 

  • Dreyfuss D, Saumon G (2001) Pressure-volume curves: searching for the grail or laying patients with adult respiratory distress syndrome on procrustes’ bed? Am J Respir Crit Care Med 163:2–3

    CAS  PubMed  Google Scholar 

  • Field S, Sanci S, Grassino A (1984) Respiratory muscle oxygen consumption estimated by the diaphragm pressure-time index. J Appl Physiol 57(1):44–51

    CAS  PubMed  Google Scholar 

  • Fisher JB, Mammel MC, Coleman JM, Bing DR, Boros SJ (1988) Identifying lung overdistention during mechanical ventilation by using volume-pressure loops. Pediatr Pulmonol 5:10–14

    CAS  PubMed  Google Scholar 

  • Foti G, Cereda M, Banfi G, Pelosi P, Fumagalli R, Pesenti A (1997) End-inspiratory airway occlusion: a method to assess the pressure developed by inspiratory muscles in patients with acute lung injury undergoing pressure support. Am J Respir Crit Care Med 156(4 Pt 1):1210–1216

    CAS  PubMed  Google Scholar 

  • Gattinoni L, Pesenti A, Avalli L, Rossi F, Bombino M (1987a) Pressure-volume curve of total respiratory system in acute respiratory failure. Computed tomographic scan study. Am Rev Respir Dis 136:730–736

    CAS  PubMed  Google Scholar 

  • Gattinoni L, Mascheroni D, Basilico E, Foti G, Pesenti A, Avalli L (1987b) Volume/pressure curve of total respiratory system in paralysed patients: artefacts and correction factors. Intensive Care Med 13:19–25

    CAS  PubMed  Google Scholar 

  • Gattinoni L, Pesenti A, Bombino M, Baglioni S, Rivolta M, Rossi F, Rossi G, Fumagalli R, Marcolin R, Mascher-oni D, Torresin A (1988) Relationships between lung computed tomographic density, gas exchange, and PEEP in acute respiratory failure. Anesthesiology 69:824–832

    CAS  PubMed  Google Scholar 

  • Gattinoni L, Eleonora C, Caironi P (2005) Monitoring of pulmonary mechanics in acute respiratory distress syndrome to titrate therapy. Curr Opin Crit Care 11:252–258

    PubMed  Google Scholar 

  • Gattinoni L, Caironi P, Cressoni M, Chiumello D, Ranieri VM, Quintel M, Russo S, Patroniti N, Cornejo R, Bugedo G (2006) Lung recruitment in patients with the acute respiratory distress syndrome. N Engl J Med 354:1775–1786

    CAS  PubMed  Google Scholar 

  • Giuliani R, Mascia L, Recchia F, Caracciolo A, Fiore T, Ranieri VM (1995) Patient-ventilator interaction during synchronized intermittent mandatory ventilation. Effects of flow triggering. Am J Respir Crit Care Med 151(1):1–9

    CAS  Google Scholar 

  • Graham AS, Chandrashekharaiah G, Citak A, Wetzel RC, Newth CJL (2007) Positive end-expiratory pressure and pressure support in peripheral airways obstruction work of breathing in intubated children. Intensive Care Med 33:120–127

    CAS  PubMed  Google Scholar 

  • Hammer J, Newth CJ (1995) Infant lung function testing in the intensive care unit. Intensive Care Med 21:744–752

    CAS  PubMed  Google Scholar 

  • Hammer J, Newth CJ (2009) Assessment of thoraco-abdominal asynchrony. Paediatr Respir Rev 10:75–80

    CAS  PubMed  Google Scholar 

  • Hammer J, Numa A, Newth CJ (1995) Albuterol responsiveness in infants with respiratory failure caused by respiratory syncytial virus infection. J Pediatr 127:485–490

    CAS  PubMed  Google Scholar 

  • Harikumar G, Egberongbe Y, Nadel S, Wheatley E, Moxham J, Greenough A, Rafferty GF (2009) Tension-time index as a predictor of extubation outcome in ventilated children. Am J Respir Crit Care Med 180:982–988

    PubMed Central  PubMed  Google Scholar 

  • Harris RS (2005) Pressure-volume curves of the respiratory system. Respir Care 50:78–98

    PubMed  Google Scholar 

  • Harris RS, Hess DR, Venegas JG (2000) An objective analysis of the pressure-volume curve in the acute respiratory distress syndrome. Am J Respir Crit Care Med 161:432–439

    CAS  PubMed  Google Scholar 

  • Heulitt MJ, Thurman TL, Holt SJ, Jo CH, Simpson PM (2009a) Reliability of displayed tidal volume in infants and children during dual controlled ventilation. Pediatr Crit Care Med 10(6):661–667

    PubMed  Google Scholar 

  • Heulitt MJ, Thurman TL, Holt SJ, Jo CH, Simpson P (2009b) Reliability of displayed tidal volume in infants and children during dual-controlled ventilation. Pediatr Crit Care Med 10(6):661–667

    Google Scholar 

  • Hickling KG (2001) Best compliance during a decremental, but not incremental, positive end-expiratory pressure trial is related to open-lung positive end-expiratory pressure: a mathematical model of acute respiratory distress syndrome lungs. Am J Respir Crit Care Med 163(1):69–78

    CAS  PubMed  Google Scholar 

  • Higgs BD, Behrakis PK, Bevan DR, Milic-Emili J (1983) Measurement of pleural pressure with esophageal balloon in anesthetized humans. Anesthesiology 59:340–343

    CAS  PubMed  Google Scholar 

  • Ingimarsson J, Bjorklund LJ, Larsson A, Werner O (2001) The pressure at the lower inflexion point has no relation to airway collapse in surfactant-treated premature lambs. Acta Anaesthesiol Scand 45:690–695

    CAS  PubMed  Google Scholar 

  • Jackson EA, Coates AL, Gappa M, Stocks J (1995) In vitro assessment of infant pulmonary function equipment. Pediatr Pulmonol 19:205–213

    CAS  PubMed  Google Scholar 

  • Jarreau PH, Moriette G, Mussat P, Mariette C, Mohanna A, Harf A, Lorino H (1996) Patient-triggered ventilation decreases work of breathing in neonates. Am J Respir Crit Care Med 153:1176–1181

    CAS  PubMed  Google Scholar 

  • Jonson B, Richard JC, Straus C, Mancebo J, Lemaire F, Brochard L (1999) Pressure-volume curves and compliance in acute lung injury: evidence of recruitment above the lower inflection point. Am J Respir Crit Care Med 159(4 Pt 1):1172–1178

    CAS  PubMed  Google Scholar 

  • Jubran A, Tobin MJ (1997) Passive mechanics of lung and chest wall in patients who failed and succeeded in trials of weaning. Am J Respir Crit Care Med 155:916–921

    CAS  PubMed  Google Scholar 

  • Jubran A, Van de Graaff WB, Tobin MJ (1995) Variability of patient-ventilator interaction with pressure support ventilation in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med 152:129–136

    CAS  PubMed  Google Scholar 

  • Karason S et al (2000) Evaluation of pressure/volume loops based on intratracheal pressure measurements during dynamic conditions. Acta Anaesthesiol Scand 44(5):571–577

    CAS  PubMed  Google Scholar 

  • Kendrick AH (1996) Comparison of methods of measuring static lung volumes. Monaldi Arch Chest Dis 51:431–439

    CAS  PubMed  Google Scholar 

  • Khemani RG, Bart III, RD, Newth CJL (2007) Respiratory monitoring during mechanical ventilation. Paediatr Child Health 17(5):193–201

    Google Scholar 

  • Khemani RG, Conti D, Alonzo TA, Bart RD III, Newth CJ (2009) Effect of tidal volume in children with acute hypoxemic respiratory failure. Intensive Care Med 35:1428–1437

    PubMed  Google Scholar 

  • Laghi F (2008) Weaning: can the computer help? Intensive Care Med 34(10):1746–1748

    PubMed  Google Scholar 

  • LeSouef PN, England SJ, Bryan AC (1984) Passive respiratory mechanics in newborn and children. Am Rev Respir Dis 129:727–729

    Google Scholar 

  • LeSouef PN, England SJ, Bryan AC (1984) Total resistance of the respiratory system in preterm infants with and without an endotracheal tube. J Pediatr 104:108–111

    CAS  PubMed  Google Scholar 

  • Levy P, Similowski T, Corbeil C (1989) A method for studying the static volume-pressure curves of the respiratory system during mechanical ventilation. J Crit Care 4:83–89

    Google Scholar 

  • Loring SH, O’Donnell CR, Behazin N, Malhotra A, Sarge T, Ritz R, Novack V, Talmor D (2010) Esophageal pressures in acute lung injury: do they represent artifact or useful information about transpulmonary pressure, chest wall mechanics, and lung stress? J Appl Physiol 108:515–522

    PubMed Central  PubMed  Google Scholar 

  • Lu Q, Vieira SR, Richecoeur J, Puybasset L, Kalfon P, Coriat P, Rouby JJ (1999) A simple automated method for measuring pressure-volume curves during mechanical ventilation. Am J Respir Crit Care Med 159:275–282

    CAS  PubMed  Google Scholar 

  • Lu Q, Malbouisson LM, Mourgeon E, Goldstein I, Coriat P, Rouby JJ (2001) Assessment of PEEP-induced reopening of collapsed lung regions in acute lung injury: are one or three CT sections representative of the entire lung? Intensive Care Med 27:1504–1510

    CAS  PubMed  Google Scholar 

  • Luecke T, Meinhardt JP, Herrmann P, Weisser G, Pelosi P, Quintel M (2003) Setting mean airway pressure during high-frequency oscillatory ventilation according to the static pressure – volume curve in surfactant-deficient lung injury: a computed tomography study. Anesthesiology 99:1313–1322

    PubMed  Google Scholar 

  • Macnaughton PD (2006) New ventilators for the ICU–usefulness of lung performance reporting. Br J Anaesth 97:57–63

    CAS  PubMed  Google Scholar 

  • Maggiore SM, Jonson B, Richard JC, Jaber S, Lemaire F, Brochard L (2001) Alveolar derecruitment at decremental positive end-expiratory pressure levels in acute lung injury: comparison with the lower inflection point, oxygenation, and compliance. Am J Respir Crit Care Med 164:795–801

    CAS  PubMed  Google Scholar 

  • Maggiore SM, Richard JC, Brochard L (2003) What has been learnt from P/V curves in patients with acute lung injury/acute respiratory distress syndrome. Eur Respir J Suppl 42:22s–26s

    CAS  PubMed  Google Scholar 

  • Main E, Castle R, Stocks J, James I, Hatch D (2001) The influence of endotracheal tube leak on the assessment of respiratory function in ventilated children. Intensive Care Med 27:1788–1797

    CAS  PubMed  Google Scholar 

  • Marini JJ, Rodriguez RM, Lamb V (1986) Bedside estimation of the inspiratory work of breathing during mechanical ventilation. Chest 89(1):56–63

    CAS  PubMed  Google Scholar 

  • Matamis D, Lemaire F, Harf A, Brun-Buisson C, Ansquer JC, Atlan G (1984) Total respiratory pressure-volume curves in the adult respiratory distress syndrome. Chest 86:58–66

    CAS  PubMed  Google Scholar 

  • Mathe JC, Clement A, Chevalier JY, Gaultier C, Costil J (1987) Use of total inspiratory pressure-volume curves for determination of appropriate positive end-expiratory pressure in newborns with hyaline membrane disease. Intensive Care Med 13:332–336

    CAS  PubMed  Google Scholar 

  • Mead J (1996) Mechanics of lung and chest wall. In: West JB (ed) Respiratory physiology: people and ideas. Oxford University Press, New York, pp 173–207

    Google Scholar 

  • Mead J, Whittenberger JL (1953) Physical properties of the human lung measured during spontaneous respiration. J Appl Physiol 5:779–796

    Google Scholar 

  • Mehta S, Stewart TE, MacDonald R, Hallett D, Banayan D, Lapinsky S, Slutsky A (2003) Temporal change, reproducibility, and interobserver variability in pressure-volume curves in adults with acute lung injury and acute respiratory distress syndrome. Crit Care Med 31:2118–2125

    PubMed  Google Scholar 

  • Meier T, Luepschen H, Karsten J, Leibecke T, Grossherr M, Gehring H, Leonhardt S (2008) Assessment of regional lung recruitment and derecruitment during a PEEP trial based on electrical impedance tomography. Intensive Care Med 34:543–550

    PubMed  Google Scholar 

  • Mergoni M, Martelli A, Volpi A, Primavera S, Zuccoli P, Rossi A (1997) Impact of positive end-expiratory pressure on chest wall and lung pressure-volume curve in acute respiratory failure. Am J Respir Crit Care Med 156:846–854

    CAS  PubMed  Google Scholar 

  • Mergoni M, Volpi A, Bricchi C, Rossi A (2001) Lower inflection point and recruitment with PEEP in ventilated patients with acute respiratory failure. J Appl Physiol 91:441–450

    CAS  PubMed  Google Scholar 

  • Miedema M, de Jongh FH, Frerichs I, van Veenendaal MB, van Kaam AH (2011) Changes in lung volume and ventilation during lung recruitment in high-frequency ventilated preterm infants with respiratory distress syndrome. J Pediatr 159:199–205

    PubMed  Google Scholar 

  • Millic-Emili J, Turner JM et al (1964) Improved technique for estimating pleural pressure from esophageal balloon. J Appl Physiol 19:207–211

    Google Scholar 

  • Milner AD, Saunders RA, Hopkin LE (1978) Relationship of intra-oesophageal pressure to mouth pressure during the measurement of thoracic gas volume in the newborn. Biol Neonate 33(5–56):314–319

    CAS  PubMed  Google Scholar 

  • Monkman SL, Andersen CC, Nahmias C, Ghaffer H, Bourgeois JM, Roberts RS, Schmidt B, Kirpalani HM (2004) Positive end-expiratory pressure above lower inflection point minimizes influx of activated neutrophils into lung. Crit Care Med 32:2471–2475

    PubMed  Google Scholar 

  • Mortola JP, Saetta M (1987) Measurements of respiratory mechanics in the newborn. A simple approach. Pediatr Pulmonol 3:123–130

    CAS  PubMed  Google Scholar 

  • Mortola JP, Fisher JT, Smith B, Fox G, Weeks S (1982) Dynamics of breathing in infants. J Appl Physiol 3:1209–1215

    Google Scholar 

  • Mull RT (1984) Mass estimates by computed tomography: physical density from CT numbers. Am J Radiol 143:1101–1104

    CAS  Google Scholar 

  • Neve V, de la Roque ED, Leclerc F, Leteurtre S, Dorkenoo A, Sadik A, Cremer R, Logier R (2000) Ventilator-induced overdistension in children – dynamic versus low-flow inflation volume-pressure curves. Am J Respir Crit Care Med 162:139–147

    CAS  PubMed  Google Scholar 

  • Neve V, Leclerc F, de la Roque ED, Leteurtre S, Riou Y (2001) Overdistension in ventilated children. Crit Care 5:196–203

    CAS  PubMed Central  PubMed  Google Scholar 

  • Newth CJ, Rachman B, Patel N, Hammer J (2004) The use of cuffed versus uncuffed endotracheal tubes in pediatric intensive care. J Pediatr 144:333–337

    PubMed  Google Scholar 

  • Nicolai T, Lanteri CJ, Sly PD (1993) Frequency dependence of elastance and resistance in ventilated children with and without the chest opened. Eur Respir J 6(9):1340–1346

    CAS  PubMed  Google Scholar 

  • Nunes S, Uusaro A, Takala J (2004) Pressure-volume relationships in acute lung injury: methodological and clinical implications. Acta Anaesthesiol Scand 48:278–286

    CAS  PubMed  Google Scholar 

  • Pandit PB, Courtney SE, Pyon KH, Saslow JG, Habib RH (2001) Work of breathing during constant- and variable-flow nasal continuous positive airway pressure in preterm neonates. Pediatrics 108:682–685

    CAS  PubMed  Google Scholar 

  • Patel DS, Sharma A, Prendergast M, Rafferty GF, Greenough A (2009) Work of breathing and different levels of volume-targeted ventilation. Pediatrics 123(4):e679–684. Epub 2009 Mar 2. doi:10.1542/peds.2008-2635

  • Patel DS, Sharma A, Prendergast M, Rafferty M, Greenough A (2010) Work of breathing and different levels of volume-targeted ventilation. Pediatrics 123(4):679–684

    Google Scholar 

  • Patroniti N, Bellani G, Manfio A, Maggioni E, Giuffrida A, Foti G, Antonio Pesenti A (2004) Lung volume in mechanically ventilated patients: measurement by simplified helium dilution compared to quantitative CT scan. Intensive Care Med 30:282–289

    PubMed  Google Scholar 

  • Pellicano A, Tingay DG, Mills JF, Fasulakis S, Morley CJ, Dargaville PA (2009) Comparison of four methods of lung volume recruitment during high frequency oscillatory ventilation. Intensive Care Med 35:1990–1998

    PubMed  Google Scholar 

  • Pelosi P, Croci M, Ravagnan I, Vicardi P, Gattinoni L (1996) Total respiratory system, lung, and chest wall mechanics in sedated-paralyzed postoperative morbidly obese patients. Chest 109:144–151

    CAS  PubMed  Google Scholar 

  • Pelosi P, Goldner M, McKibben A, Adams A, Eccher G, Caironi P, Los- appio S, Gattinoni L, Marini JJ (2001) Recruitment and derecruitment during acute respiratory failure: an experi- mental study. Am J Respir Crit Care Med 164:122–130

    CAS  PubMed  Google Scholar 

  • Pereira C, Bohe J, Rosselli S, Combourieu E, Pommier C, Perdrix JP, Richard JC, Badet M, Gaillard S, Philit F, Guerin C (2003) Sigmoidal equation for lung and chest wall volume-pressure curves in acute respiratory failure. J Appl Physiol 95:2064–2071

    PubMed  Google Scholar 

  • Pfenninger J, Minder C (1988) Pressure-volume curves, static compliances and gas exchange in hyaline membrane disease during conventional mechanical and high-frequency ventilation. Intensive Care Med 14:364–372

    CAS  PubMed  Google Scholar 

  • Poiseuille JLM (1840) Recherches experimentales sur le mouvement des liquids dans les tubes de tres petits diameters. C R Acad Sci 11(962–967):1041–1048

    Google Scholar 

  • Polese G, Rossi A, Appendini L et al (1991) Partitioning of respiratory mechanics in mechanically ventilated patients. J Appl Physiol 71:2425–2433

    CAS  PubMed  Google Scholar 

  • Pride NB, Permutt S, Riley RL et al (1967) Determination of maximal expiratory flow from the lungs. J Appl Physiol 23:646–662

    CAS  PubMed  Google Scholar 

  • Radford EPJ (1964) Static mechanical properties of mammalian lungs. In: Fenn WO (ed) Handbook of physiology. American Physiological Society, Bethesda, pp 429–449

    Google Scholar 

  • Rahn H, Otis A, Fenn WO (1946) The pressure-volume diagram of the thorax and lung. Fed Proc 5(1 Pt 2):82

    CAS  PubMed  Google Scholar 

  • Ranieri VM, Brienza N, Santostasi S, Puntillo F, Mascia L, Vitale N, Giuliani R, Memeo V, Bruno F, Fiore T, Brienza A, Slutsky AS (1997) Impairment of lung and chest wall mechanics in patients with acute respiratory distress syndrome: role of abdominal distension. Am J Respir Crit Care Med 156:1082–1091

    CAS  PubMed  Google Scholar 

  • Ranieri VM, Suter PM, Tortorella C, De TR, Dayer JM, Brienza A, Bruno F, Slutsky AS (1999) Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial. JAMA 282:54–61

    CAS  PubMed  Google Scholar 

  • Rimensberger PC, Cox PN, Frndova H, Bryan AC (1999) The open lung during small tidal volume ventilation: concepts of recruitment and “optimal” positive end-expiratory pressure. Crit Care Med 27(9):1946–1952

    CAS  PubMed  Google Scholar 

  • Ross PA, Hammer J, Khemani R, Klein M, Newth CJ (2010) Pressure-rate product and phase angle as measures of acute inspiratory upper airway obstruction in rhesus monkeys. Pediatr Pulmonol 45:639–644

    PubMed  Google Scholar 

  • Rossi A, Gottfried SB, Higgs BD et al (1985a) Respiratory mechanics in mechanically ventilated patients. J Appl Physiol 58:1849–1858

    CAS  PubMed  Google Scholar 

  • Rossi A, Gottfried SB, Zocchi L et al (1985b) Measurement of static compliance of the total respiratory system in patients with acute respiratory failure during mechanical ventilation. Am Rev Respir Dis 131:672–677

    CAS  PubMed  Google Scholar 

  • Rossi G, Rossi A, Milic-Emili J (1998) Monitoring respiratory mechanics in ventilator dependent patients. In: Tobin MJ (ed) Principles and practice of intensive care monitoring. McGraw-Hill, New York, pp 553–596

    Google Scholar 

  • Rouby JJ, Lu Q, Vieira S (2003) Pressure/volume curves and lung computed tomography in acute respiratory distress syndrome. Eur Respir J Suppl 42:27s–36s

    CAS  PubMed  Google Scholar 

  • Salazar E, Knowles JH (1964) An analysis of pressure-volume characteristics of the lungs. J Appl Physiol 19:97–104

    CAS  PubMed  Google Scholar 

  • Sanders RC, Thurman T, Holt SJ, Taft K, Heulitt MJ (2001) Work of breathing associated with pressure support ventilation in two different ventilators. Pediatr Pulmonol 32:62–70

    PubMed  Google Scholar 

  • Sasson CS, Del Rosarioi N, Fei R et al (1994) Influence of pressure and flow-triggered synchronous intermittent mandatory ventilation on inspiratory muscle work. Crit Care Med 22:1933–1941

    Google Scholar 

  • Schuessler TF, Bates JH (1995) A computer-controlled research ventilator for small animals: design and evaluation. IEEE Trans Biomed Eng 42:860–866

    CAS  PubMed  Google Scholar 

  • Servillo G, Svantesson C, Beydon L, Roupie E, Brochard L, Lemaire F, Jonson B (1997) Pressure-volume curves in acute respiratory failure: automated low flow inflation versus occlusion. Am J Respir Crit Care Med 155:1629–1636

    CAS  PubMed  Google Scholar 

  • Shannon DC (1989) Rational monitoring of respiratory function during mechanical ventilation of infants and children. Intensive Care Med 15(Suppl 1):S13–S16

    PubMed  Google Scholar 

  • Sivan Y, Deakers TW, Newth CJL (1990) Thoracoabdominal asynchrony in acute upper airway obstruction in small children. Am Rev Respir Dis 142:540–544

    CAS  PubMed  Google Scholar 

  • Sivan Y, Ward SD, Deakers T, Keens TG, Newth CJ (1991) Rib cage to abdominal asynchrony in children undergoing polygraphic sleep studies. Pediatr Pulmonol 11:141–146

    CAS  PubMed  Google Scholar 

  • Sly PD, Bates JHT (1988) Computer analysis of physical factors affecting the use of the interruptor technique in infants. Pediatr Pulmonol 4:219–224

    CAS  PubMed  Google Scholar 

  • Smith TC, Marini JJ (1988) Impact of PEEP on lung mechanics and work of breathing in severe airflow obstruction. J Appl Physiol 65:1488–1499

    CAS  PubMed  Google Scholar 

  • Solymar L, Landser FJ, Duiverman E (1989) Measurement of resistance with forced oscillation technique. Eur Respir J Suppl 4:150s–153s

    CAS  PubMed  Google Scholar 

  • Stahl CA et al (2006) Dynamic versus static respiratory mechanics in acute lung injury and acute respiratory distress syndrome. Crit Care Med 34(8):2090–2098

    PubMed  Google Scholar 

  • Stocks J, Jackson E (1996) Comparison of dynamic and passive respiratory mechanics in ventilated newborn infants. Pediatr Pulmonol 22(4):280–282

    CAS  PubMed  Google Scholar 

  • Stoller JK (1991) Physiologic rationale for resting ventilatory muscles. Respir Care 36:290–296

    Google Scholar 

  • Suter PM, Fairley B, Isenberg MD (1975) Optimum end-expiratory airway pressure in patients with acute pulmonary failure. N Engl J Med 292(6):284–289

    CAS  PubMed  Google Scholar 

  • Suter PM, Fairley HB, Isenberg MD (1978) Effect of tidal volume and positive end-expiratory pressure on compliance during mechanical ventilation. Chest 73:158–162

    CAS  PubMed  Google Scholar 

  • Takeuchi M, Goddon S, Dolhnikoff M, Shimaoka M, Hess D, Amato MB, Kacmarek RM (2002) Set positive end-expiratory pressure during protective ventilation affects lung injury. Anesthesiology 97:682–692

    CAS  PubMed  Google Scholar 

  • Talmor D, Sarge T, Malhotra A, O’Donnell CR, Ritz R, Lisbon A, Novack V, Loring SH (2008) Mechanical ventilation guided by esophageal pressure in acute lung injury. N Engl J Med 359:2095–2104

    CAS  PubMed Central  PubMed  Google Scholar 

  • Terragni PP, Rosboch GL, Lisi A, Viale AG, Ranieri VM (2003) How respiratory system mechanics may help in minimising ventilator-induced lung injury in ARDS patients. Eur Respir J Suppl 42:15s–21s

    CAS  PubMed  Google Scholar 

  • Thiagarajan RR, Coleman DM, Bratton SL, Watson RS, Martin LD (2004) Inspiratory work of breathing is not decreased by flow-triggered sensing during spontaneous breathing in children receiving mechanical ventilation: a preliminary report. Pediatr Crit Care Med 5(4):375–378

    PubMed  Google Scholar 

  • Tingay DG, Mills JF, Morley CJ, Pellicano A, Dargaville PA (2006) The deflation limb of the pressure-volume relationship in infants during high-frequency ventilation. Am J Respir Crit Care Med 173:414–420

    PubMed  Google Scholar 

  • Turner DA, Heitz D, Zurakowski D, Arnold JH (2009) Automated measurement of the lower inflection point in a pediatric lung model. Pediatr Crit Care Med 10:511–516

    PubMed  Google Scholar 

  • Tuxen DV (1994) Permissive hypercapnic ventilation. Am J Respir Crit Care Med 150:870–874

    CAS  PubMed  Google Scholar 

  • Tuxen DV, Williams TJ, Scheinkestel CD, Czarny D, Bowes G (1992) Use of a measurement of pulmonary hyperinflation to control the level of mechanical ventilation in patients with acute severe asthma. Am Rev Respir Dis 146:1136–1142

    CAS  PubMed  Google Scholar 

  • Venegas JG, Harris RS, Simon BA (1998) A comprehensive equation for the pulmonary pressure-volume curve. J Appl Physiol 84:389–395

    CAS  PubMed  Google Scholar 

  • Vieira SR, Puybasset L, Lu Q, Richecoeur J, Cluzel P, Coriat P, Rouby JJ (1999) A scanographic assessment of pulmonary morphology in acute lung injury. Significance of the lower inflection point detected on the lung pressure-volume curve. Am J Respir Crit Care Med 159:1612–1623

    CAS  PubMed  Google Scholar 

  • Villar J, Kacmarek RM, Perez-Mendez L, Aguirre-Jaime A (2006) A high positive end-expiratory pressure, low tidal volume ventilatory strategy improves outcome in persistent acute respiratory distress syndrome: a randomized, controlled trial. Crit Care Med 34:1311–1318

    PubMed  Google Scholar 

  • Washko GR, O’Donnell CR, Loring SH (2006) Volume-related and volume-independent effects of posture on esophageal and transpulmonary pressures in healthy subjects. J Appl Physiol 100(3):753–758

    Google Scholar 

  • Wetzel RC (1996) Pressure-support ventilation in children with severe asthma. Crit Care Med 24:1603–1605

    CAS  PubMed  Google Scholar 

  • Williams TJ, Tuxen DV, Scheinkestel CD, Czarny D, Bowes G (1992) Risk factors for morbidity in mechanically ventilated patients with acute severe asthma. Am Rev Respir Dis 146:607–615

    CAS  PubMed  Google Scholar 

  • Woodcock AJ, Vincent NJ, Macklem PT (1969) Frequency dependence of compliance as a test for obstruction in the small airways. J Clin Invest 48:1097–1106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Katherine C. Clement , Peter A. Dargaville , Mark Heulitt , Christopher J. L. Newth MD, FRCPC, FRACP or Peter C. Rimensberger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Clement, K.C. et al. (2015). Respiratory Mechanics in the Mechanically Ventilated Patient. In: Rimensberger, P. (eds) Pediatric and Neonatal Mechanical Ventilation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01219-8_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01219-8_11

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01218-1

  • Online ISBN: 978-3-642-01219-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics