Development of the Respiratory System (Including the Preterm Infant)

  • Stephen Joza
  • Martin PostEmail author


The developing mammalian lung is challenged by the requisite need for a gas-exchange surface area extensive enough to meet the needs of an organism’s oxygen consumption and CO2 removal. This is achieved first by the transformation of the primitive endoderm into the 105 conducting and 107 respiratory airways by iterative branching morphogenesis, followed by the extensive subdivision and successive maturation of the terminal airways into alveoli: the hundreds of millions of thin spherical cavities which facilitate gas exchange between the airways and the vascular system. Since the process of alveolar formation (alveolarization) occurs largely after birth, premature infants are at increased susceptibility to respiratory distress, often necessitating prolonged assisted ventilation. Despite major advances in the management of perinatal infant care, including improved mechanical ventilation modalities, prenatal steroid administration, and surfactant therapy, many such infants do not undergo normal alveolar development, resulting in the chronic lung disease, bronchopulmonary dysplasia (BPD). An appreciation of the complex cell and molecular interactions which govern normal lung morphogenesis is essential for understanding the aetiology of—and advancing treatments for—pulmonary diseases such as BPD.


Idiopathic Pulmonary Fibrosis Congenital Diaphragmatic Hernia Lung Development Pulmonary Vasculature Congenital Diaphragmatic Hernia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Acute respiratory distress syndrome


Bronchoalveolar stem cells


Bronchopulmonary dysplasia


Congenital diaphragmatic hernia


Pulmonary diffusing capacity for carbon monoxide


Embryonic day


Extracellular matrix


Fibroblast growth factor


Fetal liver kinase-1


Fms-like tyrosine kinase


Forkhead box




Hypoxia-inducible factor




Idiopathic pulmonary fibrosis


Matrix metalloproteinase


Nuclear factor kB


Patent ductus arteriosus


Platelet-derived growth factor


Postnatal day


Retinoic acid


Respiratory distress syndrome


Sonic hedgehog


Surfactant protein C


Transforming growth factor beta


Tissue inhibitor of metalloproteinases


Thyroid transcription factor 1


Alveolar volume


Vascular endothelial growth factor A


Vascular endothelial growth factor receptor


  1. Abman SH, Mourani PM, Sontag M (2008) Bronchopulmonary dysplasia: a genetic disease. Pediatrics 122:658–659PubMedGoogle Scholar
  2. Acarregui MJ, Penisten ST, Goss KL, Ramirez K, Snyder JM (1999) Vascular endothelial growth factor gene expression in human fetal lung in vitro. Am J Respir Cell Mol Biol 20:14–23PubMedGoogle Scholar
  3. Adamson IY (1997) Development of lung structure. In: Crystal RG (ed) The lung: scientific foundations, 2nd edn. Lippincott-Raven, Philadelphia, pp 993–1001Google Scholar
  4. Aghai ZH, Faqiri S, Saslow JG, Nakhla T, Farhath S, Kumar A, Eydelman R, Strande L, Stahl G, Leone P, Bhandari V (2008) Angiopoietin 2 concentrations in infants developing bronchopulmonary dysplasia: attenuation by dexamethasone. J Perinatol 28:149–155PubMedGoogle Scholar
  5. Alejandre-Alcazar MA, Kwapiszewska G, Reiss I, Amarie OV, Marsh LM, Sevilla-Perez J, Wygrecka M, Eul B, Kobrich S, Hesse M, Schermuly RT, Seeger W, Eickelberg O, Morty RE (2007) Hyperoxia modulates TGF-beta/BMP signaling in a mouse model of bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 292:L537–L549PubMedGoogle Scholar
  6. Alejandre-Alcazar MA, Michiels-Corsten M, Vicencio AG, Reiss I, Ryu J, de Krijger RR, Haddad GG, Tibboel D, Seeger W, Eickelberg O, Morty RE (2008) TGF-beta signaling is dynamically regulated during the alveolarization of rodent and human lungs. Dev Dyn 237:259–269PubMedGoogle Scholar
  7. Altiok O, Yasumatsu R, Bingol-Karakoc G, Riese RJ, Stahlman MT, Dwyer W, Pierce RA, Bromme D, Weber E, Cataltepe S (2006) Imbalance between cysteine proteases and inhibitors in a baboon model of bronchopulmonary dysplasia. Am J Respir Crit Care Med 173:318–326PubMedCentralPubMedGoogle Scholar
  8. Ambalavanan N, Nicola T, Li P, Bulger A, Murphy-Ullrich J, Oparil S, Chen YF (2008) Role of matrix metalloproteinase-2 in newborn mouse lungs under hypoxic conditions. Pediatr Res 63:26–32PubMedCentralPubMedGoogle Scholar
  9. Asikainen TM, Ahmad A, Schneider BK, White CW (2005) Effect of preterm birth on hypoxia-inducible factors and vascular endothelial growth factor in primate lungs. Pediatr Pulmonol 40:538–546PubMedGoogle Scholar
  10. Atkinson JJ, Holmbeck K, Yamada S, Birkedal-Hansen H, Parks WC, Senior RM (2005) Membrane-type 1 matrix metalloproteinase is required for normal alveolar development. Dev Dyn 232:1079–1090PubMedGoogle Scholar
  11. Balinotti JE, Tiller CJ, Llapur CJ, Jones MH, Kimmel RN, Coates CE, Katz BP, Nguyen JT, Tepper RS (2009) Growth of the lung parenchyma early in life. Am J Respir Crit Care Med 179:134–137PubMedCentralPubMedGoogle Scholar
  12. Basseres DS, Levantini E, Ji H, Monti S, Elf S, Dayaram T, Fenyus M, Kocher O, Golub T, Wong KK, Halmos B, Tenen DG (2006) Respiratory failure due to differentiation arrest and expansion of alveolar cells following lung-specific loss of the transcription factor C/EBPalpha in mice. Mol Cell Biol 26:1109–1123PubMedCentralPubMedGoogle Scholar
  13. Baybutt RC, Hu L, Molteni A (2000) Vitamin A deficiency injures lung and liver parenchyma and impairs function of rat type II pneumocytes. J Nutr 130:1159–1165PubMedGoogle Scholar
  14. Bellusci S, Grindley J, Emoto H, Itoh N, Hogan BL (1997) Fibroblast growth factor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124:4867–4878PubMedGoogle Scholar
  15. Bhaskaran M, Kolliputi N, Wang Y, Gou D, Chintagari NR, Liu L (2007) Trans-differentiation of alveolar epithelial type II cells to type I cells involves autocrine signaling by transforming growth factor beta 1 through the Smad pathway. J Biol Chem 282:3968–3976PubMedGoogle Scholar
  16. Bhatt AJ, Pryhuber GS, Huyck H, Watkins RH, Metlay LA, Maniscalco WM (2001) Disrupted pulmonary vasculature and decreased vascular endothelial growth factor, Flt-1, and TIE-2 in human infants dying with bronchopulmonary dysplasia. Am J Respir Crit Care Med 164:1971–1980PubMedGoogle Scholar
  17. Bland RD, Ertsey R, Mokres LM, Xu L, Jacobson BE, Jiang S, Alvira CM, Rabinovitch M, Shinwell ES, Dixit A (2008) Mechanical ventilation uncouples synthesis and assembly of elastin and increases apoptosis in lungs of newborn mice. Prelude to defective alveolar septation during lung development? Am J Physiol Lung Cell Mol Physiol 294:L3–L14PubMedGoogle Scholar
  18. Bonniaud P, Kolb M, Galt T, Robertson J, Robbins C, Stampfli M, Lavery C, Margetts PJ, Roberts AB, Gauldie J (2004) Smad3 null mice develop airspace enlargement and are resistant to TGF-beta-mediated pulmonary fibrosis. J Immunol 173:2099–2108PubMedGoogle Scholar
  19. Bostrom H, Willetts K, Pekny M, Leveen P, Lindahl P, Hedstrand H, Pekna M, Hellstrom M, Gebre-Medhin S, Schalling M, Nilsson M, Kurland S, Tornell J, Heath JK, Betsholtz C (1996) PDGF-A signaling is a critical event in lung alveolar myofibroblast development and alveogenesis. Cell 85:863–873PubMedGoogle Scholar
  20. Bourbon J, Boucherat O, Chailley-Heu B, Delacourt C (2005) Control mechanisms of lung alveolar development and their disorders in bronchopulmonary dysplasia. Pediatr Res 57:38R–46RPubMedGoogle Scholar
  21. Brown E, James K (2009) The lung primordium an outpouching from the foregut! Evidence-based dogma or myth? J Pediatr Surg 44:607–615PubMedGoogle Scholar
  22. Buch S, Han RN, Liu J, Moore A, Edelson JD, Freeman BA, Post M, Tanswell AK (1995) Basic fibroblast growth factor and growth factor receptor gene expression in 85% O2-exposed rat lung. Am J Physiol 268:L455–L464PubMedGoogle Scholar
  23. Bucher U, Reid L (1961) Development of the mucus-secreting elements in human lung. Thorax 16:219–225PubMedCentralPubMedGoogle Scholar
  24. Burri PH (1974) The postnatal growth of the rat lung. 3. Morphology. Anat Rec 180:77–98PubMedGoogle Scholar
  25. Burri PH (1984) Fetal and postnatal development of the lung. Annu Rev Physiol 46:617–628PubMedGoogle Scholar
  26. Burri PH (1997) Structural aspects of prenatal and postnatal development and growth of the lung. In: McDonald J (ed) Lung growth and development. Marcel Dekker, New York, pp 1–35Google Scholar
  27. Burri PH, Hlushchuk R, Djonov V (2004) Intussusceptive angiogenesis: its emergence, its characteristics, and its significance. Dev Dyn 231:474–488PubMedGoogle Scholar
  28. Caduff JH, Fischer LC, Burri PH (1986) Scanning electron microscope study of the developing microvasculature in the postnatal rat lung. Anat Rec 216:154–164PubMedGoogle Scholar
  29. Cao L, Wang J, Tseu I, Luo D, Post M (2009) Maternal exposure to endotoxin delays alveolarization during postnatal rat lung development. Am J Physiol Lung Cell Mol Physiol 296:L726–L737PubMedGoogle Scholar
  30. Cardoso WV, Lu J (2006) Regulation of early lung morphogenesis: questions, facts and controversies. Development 133:1611–1624PubMedGoogle Scholar
  31. Carmeliet P, Ng YS, Nuyens D, Theilmeier G, Brusselmans K, Cornelissen I, Ehler E, Kakkar VV, Stalmans I, Mattot V, Perriard JC, Dewerchin M, Flameng W, Nagy A, Lupu F, Moons L, Collen D, D’Amore PA, Shima DT (1999) Impaired myocardial angiogenesis and ischemic cardiomyopathy in mice lacking the vascular endothelial growth factor isoforms VEGF164 and VEGF188. Nat Med 5:495–502PubMedGoogle Scholar
  32. Chailley-Heu B, Boucherat O, Barlier-Mur AM, Bourbon JR (2005) FGF-18 is upregulated in the postnatal rat lung and enhances elastogenesis in myofibroblasts. Am J Physiol Lung Cell Mol Physiol 288:L43–L51PubMedGoogle Scholar
  33. Chang R, Andreoli S, Ng YS, Truong T, Smith SR, Wilson J, D’Amore PA (2004) VEGF expression is downregulated in nitrofen-induced congenital diaphragmatic hernia. J Pediatr Surg 39:825–828; discussion 825–828PubMedGoogle Scholar
  34. Chelly N, Mouhieddine-Gueddiche OB, Barlier-Mur AM, Chailley-Heu B, Bourbon JR (1999) Keratinocyte growth factor enhances maturation of fetal rat lung type II cells. Am J Respir Cell Mol Biol 20:423–432PubMedGoogle Scholar
  35. Chen H, Sun J, Buckley S, Chen C, Warburton D, Wang XF, Shi W (2005) Abnormal mouse lung alveolarization caused by Smad3 deficiency is a developmental antecedent of centrilobular emphysema. Am J Physiol Lung Cell Mol Physiol 288:L683–L691PubMedGoogle Scholar
  36. Chetty A, Cao GJ, Severgnini M, Simon A, Warburton R, Nielsen HC (2008) Role of matrix metalloprotease-9 in hyperoxic injury in developing lung. Am J Physiol Lung Cell Mol Physiol 295:L584–L592PubMedCentralPubMedGoogle Scholar
  37. Clerch LB, Baras AS, Massaro GD, Hoffman EP, Massaro D (2004) DNA microarray analysis of neonatal mouse lung connects regulation of KDR with dexamethasone-induced inhibition of alveolar formation. Am J Physiol Lung Cell Mol Physiol 286:L411–L419PubMedGoogle Scholar
  38. Clyman R, Cassady G, Kirklin JK, Collins M, Philips JB 3rd (2009) The role of patent ductus arteriosus ligation in bronchopulmonary dysplasia: reexamining a randomized controlled trial. J Pediatr 154:873–876PubMedCentralPubMedGoogle Scholar
  39. Cross MJ, Dixelius J, Matsumoto T, Claesson-Welsh L (2003) VEGF-receptor signal transduction. Trends Biochem Sci 28:488–494PubMedGoogle Scholar
  40. Crystal RG, Randell SH, Engelhardt JF, Voynow J, Sunday ME (2008) Airway epithelial cells: current concepts and challenges. Proc Am Thorac Soc 5:772–777PubMedGoogle Scholar
  41. Danan C, Franco ML, Jarreau PH, Dassieu G, Chailley-Heu B, Bourbon J, Delacourt C (2002) High concentrations of keratinocyte growth factor in airways of premature infants predicted absence of bronchopulmonary dysplasia. Am J Respir Crit Care Med 165:1384–1387PubMedGoogle Scholar
  42. de Mello DE, Reid LM (2000) Embryonic and early fetal development of human lung vasculature and its functional implications. Pediatr Dev Pathol 3:439–449Google Scholar
  43. de Mello DE, Sawyer D, Galvin N, Reid LM (1997) Early fetal development of lung vasculature. Am J Respir Cell Mol Biol 16:568–581Google Scholar
  44. De Moerlooze L, Spencer-Dene B, Revest J, Hajihosseini M, Rosewell I, Dickson C (2000) An important role for the IIIb isoform of fibroblast growth factor receptor 2 (FGFR2) in mesenchymal-epithelial signalling during mouse organogenesis. Development 127:483–492PubMedGoogle Scholar
  45. De Paepe ME, Patel C, Tsai A, Gundavarapu S, Mao Q (2008) Endoglin (CD105) up-regulation in pulmonary microvasculature of ventilated preterm infants. Am J Respir Crit Care Med 178:180–187PubMedCentralPubMedGoogle Scholar
  46. DeLisser HM, Helmke BP, Cao G, Egan PM, Taichman D, Fehrenbach M, Zaman A, Cui Z, Mohan GS, Baldwin HS, Davies PF, Savani RC (2006) Loss of PECAM-1 function impairs alveolarization. J Biol Chem 281:8724–8731PubMedGoogle Scholar
  47. Evans MJ, Cabral LJ, Stephens RJ, Freeman G (1975) Transformation of alveolar type 2 cells to type 1 cells following exposure to NO2. Exp Mol Pathol 22:142–150PubMedGoogle Scholar
  48. Farkas L, Farkas D, Ask K, Moller A, Gauldie J, Margetts P, Inman M, Kolb M (2009) VEGF ameliorates pulmonary hypertension through inhibition of endothelial apoptosis in experimental lung fibrosis in rats. J Clin Invest 119:1298–1311PubMedCentralPubMedGoogle Scholar
  49. Ferrara N, Carver-Moore K, Chen H, Dowd M, Lu L, O’Shea KS, Powell-Braxton L, Hillan KJ, Moore MW (1996) Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380:439–442PubMedGoogle Scholar
  50. Fong GH, Rossant J, Gertsenstein M, Breitman ML (1995) Role of the Flt-1 receptor tyrosine kinase in regulating the assembly of vascular endothelium. Nature 376:66–70PubMedGoogle Scholar
  51. Frank L (2003) Protective effect of keratinocyte growth factor against lung abnormalities associated with hyperoxia in prematurely born rats. Biol Neonate 83:263–272PubMedGoogle Scholar
  52. Gebb SA, Shannon JM (2000) Tissue interactions mediate early events in pulmonary vasculogenesis. Dev Dyn 217:159–169PubMedGoogle Scholar
  53. Greenlee KJ, Werb Z, Kheradmand F (2007) Matrix metalloproteinases in lung: multiple, multifarious, and multifaceted. Physiol Rev 87:69–98PubMedCentralPubMedGoogle Scholar
  54. Groenman FA, Rutter M, Wang J, Caniggia I, Tibboel D, Post M (2007) Effect of chemical stabilizers of hypoxia-inducible factors on early lung development. Am J Physiol Lung Cell Mol Physiol 293:L557–L567PubMedGoogle Scholar
  55. Hadchouel A, Decobert F, Franco-Montoya ML, Halphen I, Jarreau PH, Boucherat O, Martin E, Benachi A, Amselem S, Bourbon J, Danan C, Delacourt C (2008) Matrix metalloproteinase gene polymorphisms and bronchopulmonary dysplasia: identification of MMP16 as a new player in lung development. PLoS One 3:e3188PubMedCentralPubMedGoogle Scholar
  56. Hall SM, Hislop AA, Pierce CM, Haworth SG (2000) Prenatal origins of human intrapulmonary arteries: formation and smooth muscle maturation. Am J Respir Cell Mol Biol 23:194–203PubMedGoogle Scholar
  57. Hall SM, Hislop AA, Haworth SG (2002) Origin, differentiation, and maturation of human pulmonary veins. Am J Respir Cell Mol Biol 26:333–340PubMedGoogle Scholar
  58. Hiratsuka S, Minowa O, Kuno J, Noda T, Shibuya M (1998) Flt-1 lacking the tyrosine kinase domain is sufficient for normal development and angiogenesis in mice. Proc Natl Acad Sci U S A 95:9349–9354PubMedCentralPubMedGoogle Scholar
  59. Hislop AA, Haworth SG (1989) Airway size and structure in the normal fetal and infant lung and the effect of premature delivery and artificial ventilation. Am Rev Respir Dis 140:1717–1726PubMedGoogle Scholar
  60. Hokuto I, Perl AK, Whitsett JA (2003) Prenatal, but not postnatal, inhibition of fibroblast growth factor receptor signaling causes emphysema. J Biol Chem 278:415–421PubMedGoogle Scholar
  61. Hosford GE, Olson DM (2003) Effects of hyperoxia on VEGF, its receptors, and HIF-2alpha in the newborn rat lung. Am J Physiol Lung Cell Mol Physiol 285:L161–L168PubMedGoogle Scholar
  62. Hyde DM, Blozis SA, Avdalovic MV, Putney LF, Dettorre R, Quesenberry NJ, Singh P, Tyler NK (2007) Alveoli increase in number but not size from birth to adulthood in rhesus monkeys. Am J Physiol Lung Cell Mol Physiol 293:L570–L579PubMedGoogle Scholar
  63. Jakkula M, Le Cras TD, Gebb S, Hirth KP, Tuder RM, Voelkel NF, Abman SH (2000) Inhibition of angiogenesis decreases alveolarization in the developing rat lung. Am J Physiol Lung Cell Mol Physiol 279:L600–L607PubMedGoogle Scholar
  64. Jeffery PK (1998) The development of large and small airways. Am J Respir Crit Care Med 157:S174–S180Google Scholar
  65. Jeffery PK, Li D (1997) Airway mucosa: secretory cells, mucus and mucin genes. Eur Respir J 10:1655–1662PubMedGoogle Scholar
  66. Jeffery PK, Gaillard D, Moret S (1992) Human airway secretory cells during development and in mature airway epithelium. Eur Respir J 5:93–104PubMedGoogle Scholar
  67. Kalinichenko VV, Lim L, Stolz DB, Shin B, Rausa FM, Clark J, Whitsett JA, Watkins SC, Costa RH (2001) Defects in pulmonary vasculature and perinatal lung hemorrhage in mice heterozygous null for the Forkhead Box f1 transcription factor. Dev Biol 235:489–506PubMedGoogle Scholar
  68. Kaplan F, Comber J, Sladek R, Hudson TJ, Muglia LJ, Macrae T, Gagnon S, Asada M, Brewer JA, Sweezey NB (2003) The growth factor midkine is modulated by both glucocorticoid and retinoid in fetal lung development. Am J Respir Cell Mol Biol 28:33–41PubMedGoogle Scholar
  69. Kasahara Y, Tuder RM, Taraseviciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106:1311–1319PubMedCentralPubMedGoogle Scholar
  70. Kauffman SL, Burri PH, Weibel ER (1974) The postnatal growth of the rat lung. II. Autoradiography. Anat Rec 180:63–76PubMedGoogle Scholar
  71. Kaza AK, Kron IL, Leuwerke SM, Tribble CG, Laubach VE (2002) Keratinocyte growth factor enhances post-pneumonectomy lung growth by alveolar proliferation. Circulation 106:I120–I124PubMedGoogle Scholar
  72. Kendall RL, Thomas KA (1993) Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc Natl Acad Sci U S A 90:10705–10709PubMedCentralPubMedGoogle Scholar
  73. Kheradmand F, Rishi K, Werb Z (2002) Signaling through the EGF receptor controls lung morphogenesis in part by regulating MT1-MMP-mediated activation of gelatinase A/MMP2. J Cell Sci 115:839–848PubMedCentralPubMedGoogle Scholar
  74. Kirby ML, Waldo KL (1995) Neural crest and cardiovascular patterning. Circ Res 77:211–215PubMedGoogle Scholar
  75. Kotecha S, Wangoo A, Silverman M, Shaw RJ (1996) Increase in the concentration of transforming growth factor beta-1 in bronchoalveolar lavage fluid before development of chronic lung disease of prematurity. J Pediatr 128:464–469PubMedGoogle Scholar
  76. Kunig AM, Balasubramaniam V, Markham NE, Morgan D, Montgomery G, Grover TR, Abman SH (2005) Recombinant human VEGF treatment enhances alveolarization after hyperoxic lung injury in neonatal rats. Am J Physiol Lung Cell Mol Physiol 289:L529–L535PubMedGoogle Scholar
  77. Kunig AM, Balasubramaniam V, Markham NE, Seedorf G, Gien J, Abman SH (2006) Recombinant human VEGF treatment transiently increases lung edema but enhances lung structure after neonatal hyperoxia. Am J Physiol Lung Cell Mol Physiol 291:L1068–L1078PubMedGoogle Scholar
  78. Lassus P, Turanlahti M, Heikkila P, Andersson LC, Nupponen I, Sarnesto A, Andersson S (2001) Pulmonary vascular endothelial growth factor and Flt-1 in fetuses, in acute and chronic lung disease, and in persistent pulmonary hypertension of the newborn. Am J Respir Crit Care Med 164:1981–1987PubMedGoogle Scholar
  79. Le Cras TD, Markham NE, Tuder RM, Voelkel NF, Abman SH (2002) Treatment of newborn rats with a VEGF receptor inhibitor causes pulmonary hypertension and abnormal lung structure. Am J Physiol Lung Cell Mol Physiol 283:L555–L562PubMedGoogle Scholar
  80. Le Cras TD, Spitzmiller RE, Albertine KH, Greenberg JM, Whitsett JA, Akeson AL (2004) VEGF causes pulmonary hemorrhage, hemosiderosis, and air space enlargement in neonatal mice. Am J Physiol Lung Cell Mol Physiol 287:L134–L142PubMedGoogle Scholar
  81. Liebeskind A, Srinivasan S, Kaetzel D, Bruce M (2000) Retinoic acid stimulates immature lung fibroblast growth via a PDGF-mediated autocrine mechanism. Am J Physiol Lung Cell Mol Physiol 279:L81–L90PubMedGoogle Scholar
  82. Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, Izpisua-Belmonte JC, Rosenfeld MG (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401:279–282PubMedGoogle Scholar
  83. Lindahl P, Karlsson L, Hellstrom M, Gebre-Medhin S, Willetts K, Heath JK, Betsholtz C (1997) Alveogenesis failure in PDGF-A-deficient mice is coupled to lack of distal spreading of alveolar smooth muscle cell progenitors during lung development. Development 124:3943–3953PubMedGoogle Scholar
  84. Liu C, Ikegami M, Stahlman MT, Dey CR, Whitsett JA (2003) Inhibition of alveolarization and altered pulmonary mechanics in mice expressing GATA-6. Am J Physiol Lung Cell Mol Physiol 285:L1246–L1254PubMedGoogle Scholar
  85. Londhe VA, Nguyen HT, Jeng JM, Li X, Li C, Tiozzo C, Zhu N, Minoo P (2008) NF-kB induces lung maturation during mouse lung morphogenesis. Dev Dyn 237:328–338PubMedGoogle Scholar
  86. Lumsden AB, McLean A, Lamb D (1984) Goblet and Clara cells of human distal airways: evidence for smoking induced changes in their numbers. Thorax 39:844–849PubMedCentralPubMedGoogle Scholar
  87. Maeda S, Suzuki S, Suzuki T, Endo M, Moriya T, Chida M, Kondo T, Sasano H (2002) Analysis of intrapulmonary vessels and epithelial-endothelial interactions in the human developing lung. Lab Invest 82:293–301PubMedGoogle Scholar
  88. Mandeville I, Aubin J, LeBlanc M, Lalancette-Hebert M, Janelle MF, Tremblay GM, Jeannotte L (2006) Impact of the loss of Hoxa5 function on lung alveogenesis. Am J Pathol 169:1312–1327PubMedCentralPubMedGoogle Scholar
  89. Maniscalco WM, Watkins RH, Roper JM, Staversky R, O’Reilly MA (2005) Hyperoxic ventilated premature baboons have increased p53, oxidant DNA damage and decreased VEGF expression. Pediatr Res 58:549–556PubMedGoogle Scholar
  90. Massaro D, Massaro GD (1986) Dexamethasone accelerates postnatal alveolar wall thinning and alters wall composition. Am J Physiol 251:R218–R224PubMedGoogle Scholar
  91. Massaro GD, Massaro D (1996) Postnatal treatment with retinoic acid increases the number of pulmonary alveoli in rats. Am J Physiol 270:L305–L310PubMedGoogle Scholar
  92. Massaro GD, Massaro D (2000) Retinoic acid treatment partially rescues failed septation in rats and in mice. Am J Physiol Lung Cell Mol Physiol 278:L955–L960PubMedGoogle Scholar
  93. Massaro GD, Massaro D, Chambon P (2003) Retinoic acid receptor-alpha regulates pulmonary alveolus formation in mice after, but not during, perinatal period. Am J Physiol Lung Cell Mol Physiol 284:L431–L433PubMedGoogle Scholar
  94. Massaro D, Massaro GD, Chambon P (2004) Lung development and regeneration. Marcel Dekker, New YorkGoogle Scholar
  95. Masters JR (1976) Epithelial-mesenchymal interaction during lung development: the effect of mesenchymal mass. Dev Biol 51:98–108PubMedGoogle Scholar
  96. McDevitt TM, Gonzales LW, Savani RC, Ballard PL (2007) Role of endogenous TGF-beta in glucocorticoid-induced lung type II cell differentiation. Am J Physiol Lung Cell Mol Physiol 292:L249–L257PubMedGoogle Scholar
  97. McGowan S, Jackson SK, Jenkins-Moore M, Dai HH, Chambon P, Snyder JM (2000) Mice bearing deletions of retinoic acid receptors demonstrate reduced lung elastin and alveolar numbers. Am J Respir Cell Mol Biol 23:162–167PubMedGoogle Scholar
  98. McGrath-Morrow SA, Cho C, Zhen L, Hicklin DJ, Tuder RM (2005) Vascular endothelial growth factor receptor 2 blockade disrupts postnatal lung development. Am J Respir Cell Mol Biol 32:420–427PubMedGoogle Scholar
  99. Medford AR, Douglas SK, Godinho SI, Uppington KM, Armstrong L, Gillespie KM, van Zyl B, Tetley TD, Ibrahim NB, Millar AB (2009) Vascular Endothelial Growth Factor (VEGF) isoform expression and activity in human and murine lung injury. Respir Res 10:27PubMedCentralPubMedGoogle Scholar
  100. Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, Noji S, Kondoh H, Hamada H (1998) Lefty-1 is required for left-right determination as a regulator of lefty-2 and nodal. Cell 94:287–297PubMedGoogle Scholar
  101. Mercer RR, Crapo JD (1990) Spatial distribution of collagen and elastin fibers in the lungs. J Appl Physiol 69:756–765PubMedGoogle Scholar
  102. Mercer RR, Russell ML, Roggli VL, Crapo JD (1994) Cell number and distribution in human and rat airways. Am J Respir Cell Mol Biol 10:613–624PubMedGoogle Scholar
  103. Metzger RJ, Klein OD, Martin GR, Krasnow MA (2008) The branching programme of mouse lung development. Nature 453:745–750PubMedCentralPubMedGoogle Scholar
  104. Mielke G, Benda N (2001) Cardiac output and central distribution of blood flow in the human fetus. Circulation 103:1662–1668PubMedGoogle Scholar
  105. Montedonico S, Sugimoto K, Felle P, Bannigan J, Puri P (2008) Prenatal treatment with retinoic acid promotes pulmonary alveologenesis in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 43:500–507PubMedGoogle Scholar
  106. Morris DG, Sheppard D (2006) Pulmonary emphysema: when more is less. Physiology (Bethesda) 21:396–403Google Scholar
  107. Motoyama J, Liu J, Mo R, Ding Q, Post M, Hui CC (1998) Essential function of Gli2 and Gli3 in the formation of lung, trachea and oesophagus. Nat Genet 20:54–57PubMedGoogle Scholar
  108. Muehlethaler V, Kunig AM, Seedorf G, Balasubramaniam V, Abman SH (2008) Impaired VEGF and nitric oxide signaling after nitrofen exposure in rat fetal lung explants. Am J Physiol Lung Cell Mol Physiol 294:L110–L120PubMedGoogle Scholar
  109. Mund SI, Stampanoni M, Schittny JC (2008) Developmental alveolarization of the mouse lung. Dev Dyn 237:2108–2116PubMedGoogle Scholar
  110. Nakanishi H, Sugiura T, Streisand JB, Lonning SM, Roberts JD Jr (2007) TGF-beta-neutralizing antibodies improve pulmonary alveologenesis and vasculogenesis in the injured newborn lung. Am J Physiol Lung Cell Mol Physiol 293:L151–L161PubMedGoogle Scholar
  111. Nakazawa N, Montedonico S, Takayasu H, Paradisi F, Puri P (2007) Disturbance of retinol transportation causes nitrofen-induced hypoplastic lung. J Pediatr Surg 42:345–349PubMedGoogle Scholar
  112. Ng YS, Rohan R, Sunday ME, Demello DE, D’Amore PA (2001) Differential expression of VEGF isoforms in mouse during development and in the adult. Dev Dyn 220:112–121PubMedGoogle Scholar
  113. Nolen-Walston RD, Kim CF, Mazan MR, Ingenito EP, Gruntman AM, Tsai L, Boston R, Woolfenden AE, Jacks T, Hoffman AM (2008) Cellular kinetics and modeling of bronchioalveolar stem cell response during lung regeneration. Am J Physiol Lung Cell Mol Physiol 294:L1158–L1165PubMedCentralPubMedGoogle Scholar
  114. Padela S, Yi M, Cabacungan J, Shek S, Belcastro R, Masood A, Jankov RP, Tanswell AK (2008) A critical role for fibroblast growth factor-7 during early alveolar formation in the neonatal rat. Pediatr Res 63:232–238PubMedGoogle Scholar
  115. Parera MC, van Dooren M, van Kempen M, de Krijger R, Grosveld F, Tibboel D, Rottier R (2005) Distal angiogenesis: a new concept for lung vascular morphogenesis. Am J Physiol Lung Cell Mol Physiol 288:L141–L149PubMedGoogle Scholar
  116. Park MS, Rieger-Fackeldey E, Schanbacher BL, Cook AC, Bauer JA, Rogers LK, Hansen TN, Welty SE, Smith CV (2007) Altered expressions of fibroblast growth factor receptors and alveolarization in neonatal mice exposed to 85% oxygen. Pediatr Res 62:652–657PubMedGoogle Scholar
  117. Patan S (2000) Vasculogenesis and angiogenesis as mechanisms of vascular network formation, growth and remodeling. J Neurooncol 50:1–15PubMedGoogle Scholar
  118. Patrone C, Cassel TN, Pettersson K, Piao YS, Cheng G, Ciana P, Maggi A, Warner M, Gustafsson JA, Nord M (2003) Regulation of postnatal lung development and homeostasis by estrogen receptor beta. Mol Cell Biol 23:8542–8552PubMedCentralPubMedGoogle Scholar
  119. Perl AK, Gale E (2009) FGF signaling is required for myofibroblast differentiation during alveolar regeneration. Am J Physiol Lung Cell Mol Physiol 297:L299–L308PubMedCentralPubMedGoogle Scholar
  120. Pierce RA, Albertine KH, Starcher BC, Bohnsack JF, Carlton DP, Bland RD (1997) Chronic lung injury in preterm lambs: disordered pulmonary elastin deposition. Am J Physiol 272:L452–L460PubMedGoogle Scholar
  121. Poelmann RE, Gittenberger-de Groot AC (2005) Apoptosis as an instrument in cardiovascular development. Birth Defects Res C Embryo Today 75:305–313PubMedGoogle Scholar
  122. Poole TJ, Coffin JD (1989) Vasculogenesis and angiogenesis: two distinct morphogenetic mechanisms establish embryonic vascular pattern. J Exp Zool 251:224–231PubMedGoogle Scholar
  123. Post M, Souza P, Liu J, Tseu I, Wang J, Kuliszewski M, Tanswell AK (1996) Keratinocyte growth factor and its receptor are involved in regulating early lung branching. Development 122:3107–3115PubMedGoogle Scholar
  124. Prodhan P, Kinane TB (2002) Developmental paradigms in terminal lung development. Bioessays 24:1052–1059PubMedGoogle Scholar
  125. Raoul W, Chailley-Heu B, Barlier-Mur AM, Delacourt C, Maitre B, Bourbon JR (2004) Effects of vascular endothelial growth factor on isolated fetal alveolar type II cells. Am J Physiol Lung Cell Mol Physiol 286:L1293–L1301PubMedGoogle Scholar
  126. Roth-Kleiner M, Post M (2005) Similarities and dissimilarities of branching and septation during lung development. Pediatr Pulmonol 40:113–134PubMedGoogle Scholar
  127. Roth-Kleiner M, Berger TM, Tarek MR, Burri PH, Schittny JC (2005) Neonatal dexamethasone induces premature microvascular maturation of the alveolar capillary network. Dev Dyn 233:1261–1271PubMedGoogle Scholar
  128. Schachtner SK, Wang Y, Scott Baldwin H (2000) Qualitative and quantitative analysis of embryonic pulmonary vessel formation. Am J Respir Cell Mol Biol 22:157–165PubMedGoogle Scholar
  129. Schittny JC, Djonov V, Fine A, Burri PH (1998) Programmed cell death contributes to postnatal lung development. Am J Respir Cell Mol Biol 18:786–793PubMedGoogle Scholar
  130. Schittny JC, Miserocchi G, Sparrow MP (2000) Spontaneous peristaltic airway contractions propel lung liquid through the bronchial tree of intact and fetal lung explants. Am J Respir Cell Mol Biol 23:11–18PubMedGoogle Scholar
  131. Schittny JC, Mund SI, Stampanoni M (2008) Evidence and structural mechanism for late lung alveolarization. Am J Physiol Lung Cell Mol Physiol 294:L246–L254PubMedGoogle Scholar
  132. Schulz CG, Sawicki G, Lemke RP, Roeten BM, Schulz R, Cheung PY (2004) MMP-2 and MMP-9 and their tissue inhibitors in the plasma of preterm and term neonates. Pediatr Res 55:794–801PubMedGoogle Scholar
  133. Schwarz MA, Zhang F, Gebb S, Starnes V, Warburton D (2000) Endothelial monocyte activating polypeptide II inhibits lung neovascularization and airway epithelial morphogenesis. Mech Dev 95:123–132PubMedGoogle Scholar
  134. Schwarz MA, Caldwell L, Cafasso D, Zheng H (2009) Emerging pulmonary vasculature lacks fate specification. Am J Physiol Lung Cell Mol Physiol 296:L71–L81PubMedCentralPubMedGoogle Scholar
  135. Sekine K, Ohuchi H, Fujiwara M, Yamasaki M, Yoshizawa T, Sato T, Yagishita N, Matsui D, Koga Y, Itoh N, Kato S (1999) Fgf10 is essential for limb and lung formation. Nat Genet 21:138–141PubMedGoogle Scholar
  136. Serls AE, Doherty S, Parvatiyar P, Wells JM, Deutsch GH (2005) Different thresholds of fibroblast growth factors pattern the ventral foregut into liver and lung. Development 132:35–47PubMedGoogle Scholar
  137. Shannon JM, Nielsen LD, Gebb SA, Randell SH (1998) Mesenchyme specifies epithelial differentiation in reciprocal recombinants of embryonic lung and trachea. Dev Dyn 212:482–494PubMedGoogle Scholar
  138. Shannon JM, Gebb SA, Nielsen LD (1999) Induction of alveolar type II cell differentiation in embryonic tracheal epithelium in mesenchyme-free culture. Development 126:1675–1688PubMedGoogle Scholar
  139. Shehata SM, Tibboel D, Sharma HS, Mooi WJ (1999) Impaired structural remodelling of pulmonary arteries in newborns with congenital diaphragmatic hernia: a histological study of 29 cases. J Pathol 189:112–118PubMedGoogle Scholar
  140. Shenai JP (1999) Vitamin A, supplementation in very low birth weight neonates: rationale and evidence. Pediatrics 104:1369–1374PubMedGoogle Scholar
  141. Shifren A, Durmowicz AG, Knutsen RH, Hirano E, Mecham RP (2007) Elastin protein levels are a vital modifier affecting normal lung development and susceptibility to emphysema. Am J Physiol Lung Cell Mol Physiol 292:L778–L787PubMedGoogle Scholar
  142. Shiratori M, Oshika E, Ung LP, Singh G, Shinozuka H, Warburton D, Michalopoulos G, Katyal SL (1996) Keratinocyte growth factor and embryonic rat lung morphogenesis. Am J Respir Cell Mol Biol 15:328–338PubMedGoogle Scholar
  143. Snyder JM, Jenkins-Moore M, Jackson SK, Goss KL, Dai HH, Bangsund PJ, Giguere V, McGowan SE (2005) Alveolarization in retinoic acid receptor-beta-deficient mice. Pediatr Res 57:384–391PubMedGoogle Scholar
  144. Stam H, van den Beek A, Grunberg K, Stijnen T, Tiddens HA, Versprille A (1996) Pulmonary diffusing capacity at reduced alveolar volumes in children. Pediatr Pulmonol 21:84–89PubMedGoogle Scholar
  145. Stiles AD, Chrysis D, Jarvis HW, Brighton B, Moats-Staats BM (2001) Programmed cell death in normal fetal rat lung development. Exp Lung Res 27:569–587PubMedGoogle Scholar
  146. Sugimoto K, Takayasu H, Nakazawa N, Montedonico S, Puri P (2008) Prenatal treatment with retinoic acid accelerates type 1 alveolar cell proliferation of the hypoplastic lung in the nitrofen model of congenital diaphragmatic hernia. J Pediatr Surg 43:367–372PubMedGoogle Scholar
  147. Tambunting F, Beharry KD, Waltzman J, Modanlou HD (2005) Impaired lung vascular endothelial growth factor in extremely premature baboons developing bronchopulmonary dysplasia/chronic lung disease. J Investig Med 53:253–262PubMedGoogle Scholar
  148. Tang K, Rossiter HB, Wagner PD, Breen EC (2004) Lung-targeted VEGF inactivation leads to an emphysema phenotype in mice. J Appl Physiol 97:1559–1566; discussion 1549PubMedGoogle Scholar
  149. Thebaud B, Abman SH (2007) Bronchopulmonary dysplasia: where have all the vessels gone? Roles of angiogenic growth factors in chronic lung disease. Am J Respir Crit Care Med 175:978–985PubMedCentralPubMedGoogle Scholar
  150. Thebaud B, Ladha F, Michelakis ED, Sawicka M, Thurston G, Eaton F, Hashimoto K, Harry G, Haromy A, Korbutt G, Archer SL (2005) Vascular endothelial growth factor gene therapy increases survival, promotes lung angiogenesis, and prevents alveolar damage in hyperoxia-induced lung injury: evidence that angiogenesis participates in alveolarization. Circulation 112:2477–2486PubMedGoogle Scholar
  151. Thibeault DW, Mabry SM, Ekekezie II, Truog WE (2000) Lung elastic tissue maturation and perturbations during the evolution of chronic lung disease. Pediatrics 106:1452–1459PubMedGoogle Scholar
  152. Tschanz SA, Haenni B, Burri PH (2002) Glucocorticoid induced impairment of lung structure assessed by digital image analysis. Eur J Pediatr 161:26–30PubMedGoogle Scholar
  153. Tsukui T, Capdevila J, Tamura K, Ruiz-Lozano P, Rodriguez-Esteban C, Yonei-Tamura S, Magallon J, Chandraratna RA, Chien K, Blumberg B, Evans RM, Belmonte JC (1999) Multiple left-right asymmetry defects in Shh(−/−) mutant mice unveil a convergence of the shh and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci U S A 96:11376–11381PubMedCentralPubMedGoogle Scholar
  154. van Tuyl M, Liu J, Wang J, Kuliszewski M, Tibboel D, Post M (2005) Role of oxygen and vascular development in epithelial branching morphogenesis of the developing mouse lung. Am J Physiol Lung Cell Mol Physiol 288:L167–L178PubMedGoogle Scholar
  155. Walsh MC, Szefler S, Davis J, Allen M, Van Marter L, Abman S, Blackmon L, Jobe A (2006) Summary proceedings from the bronchopulmonary dysplasia group. Pediatrics 117:S52–S56PubMedGoogle Scholar
  156. Wan H, Kaestner KH, Ang SL, Ikegami M, Finkelman FD, Stahlman MT, Fulkerson PC, Rothenberg ME, Whitsett JA (2004) Foxa2 regulates alveolarization and goblet cell hyperplasia. Development 131:953–964PubMedGoogle Scholar
  157. Watterberg KL, Demers LM, Scott SM, Murphy S (1996) Chorioamnionitis and early lung inflammation in infants in whom bronchopulmonary dysplasia develops. Pediatrics 97:210–215PubMedGoogle Scholar
  158. Webb S, Qayyum SR, Anderson RH, Lamers WH, Richardson MK (2003) Septation and separation within the outflow tract of the developing heart. J Anat 202:327–342PubMedCentralPubMedGoogle Scholar
  159. Weinstein M, Xu X, Ohyama K, Deng CX (1998) FGFR-3 and FGFR-4 function cooperatively to direct alveogenesis in the murine lung. Development 125:3615–3623PubMedGoogle Scholar
  160. Welsh DA, Summer WR, Dobard EP, Nelson S, Mason CM (2000) Keratinocyte growth factor prevents ventilator-induced lung injury in an ex vivo rat model. Am J Respir Crit Care Med 162:1081–1086PubMedGoogle Scholar
  161. Wendel DP, Taylor DG, Albertine KH, Keating MT, Li DY (2000) Impaired distal airway development in mice lacking elastin. Am J Respir Cell Mol Biol 23:320–326PubMedGoogle Scholar
  162. Wert SE, Dey CR, Blair PA, Kimura S, Whitsett JA (2002) Increased expression of thyroid transcription factor-1 (TTF-1) in respiratory epithelial cells inhibits alveolarization and causes pulmonary inflammation. Dev Biol 242:75–87PubMedGoogle Scholar
  163. Yamamoto Y, Shiraishi I, Dai P, Hamaoka K, Takamatsu T (2007) Regulation of embryonic lung vascular development by vascular endothelial growth factor receptors, Flk-1 and Flt-1. Anat Rec (Hoboken) 290:958–973Google Scholar
  164. Yang L, Naltner A, Yan C (2003) Overexpression of dominant negative retinoic acid receptor alpha causes alveolar abnormality in transgenic neonatal lungs. Endocrinology 144:3004–3011PubMedGoogle Scholar
  165. Yi M, Belcastro R, Shek S, Luo D, Post M, Tanswell AK (2006) Fibroblast growth factor-2 and receptor-1alpha(IIIc) regulate postnatal rat lung cell apoptosis. Am J Respir Crit Care Med 174:581–589PubMedGoogle Scholar
  166. Zeltner TB, Caduff JH, Gehr P, Pfenninger J, Burri PH (1987) The postnatal development and growth of the human lung. I. Morphometry. Respir Physiol 67:247–267PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Lung Biology Group, Program of Physiology and Experimental MedicineHospital for Sick Children Research InstituteTorontoCanada
  2. 2.Departments of Laboratory Medicine and PathologyUniversity of TorontoTorontoCanada
  3. 3.Departments of Laboratory Medicine and PediatricsUniversity of TorontoTorontoCanada

Personalised recommendations