Skip to main content

Part of the book series: Studies in Computational Intelligence ((SCI,volume 209))

  • 588 Accesses

Abstract

A self-adaptive greedy scheduling scheme is presented to solve a Multi-Objective Optimization on Identical Parallel Machines. The primary objective is to minimize the makespan, while the secondary objective makes the schedule more stable. Actual experiments revealed that the scheme obtained the optimal primary and secondary objectives for most cases. Moreover, schedules produced by the scheme were more robust, with smaller makespans. Additionally, it has been applied to parallelize one major component of EMAN, one of the most popular software packages for cryo-electron microscopy single particle reconstruction. Besides, it can also be used in practice to parallelize other similar applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frank, J.: Three-dimensional electron microscopy of macromolecular assemblies, pp. 1–13. Oxford University Press, Oxford (2006)

    Google Scholar 

  2. Ludtke, S.J., Baldwin, P.R., Chiu, W.: EMAN: semiautomated software for high-resolution single-particle reconstructions. Journal of Structural Biology 128(1), 82–97 (1999)

    Article  Google Scholar 

  3. Frank, J., Radermacher, M., Penczek, P., Zhu, J., Li, Y., Ladjadj, M., Leith, A.: SPIDER and WEB: processing and visualization of images in 3D electron microscopy and related fields. J. Struct. Biol. 116, 190–199 (1996)

    Article  Google Scholar 

  4. Liang, Y., Ke, E.Y., Zhou, Z.H.: IMIRS: a high-resolution 3D reconstruction package integrated with a relational image database. J. Struct. Biol. 137, 292–304 (2002)

    Article  Google Scholar 

  5. Yu, X., Jin, L., Zhou, Z.H.: 3.88Ǻ structure of cytoplasmic polyhedrosis virus by cryo-electron microscopy. Nature 452 (2008) doi:10.1038

    Google Scholar 

  6. Scheres, S.H.W., Gao, H., Valle, M., Herman, G.T., Eggermont, P.P.B., Frank, J., mria Carazo, J.: Disentangling conformational states of macromolecules in 3D-EM through likelihood optimization. Nature Methods 4(1), 27–29 (2007)

    Article  Google Scholar 

  7. Yang, C., Penczek, P.A., Leith, A., Asturias, F.J., Ng, E.G., Glaeser, R.M., Frank, J.: The parallelization of SPIDER on distributed-memory computers using MPI. Journal of Structural Biology 157(1), 240–249 (2007)

    Article  Google Scholar 

  8. Hochbaum, D.S.: Approximation algorithms for NP Hard problems, pp. 1–17. PWS publishing company (1998)

    Google Scholar 

  9. Graham, R.L.: Bounds for certain multiprocessing anomalies. Bell System Technical Journal 45, 1563–1581 (1966)

    Google Scholar 

  10. Graham, R.L.: Bounds for multiprocessing timing anomalies. SIAM J. Appl. Math. 17, 416–426 (1969)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sahni, S.: Algorithms for scheduling independent tasks. J. Assoc. Comput. Mach. 23, 116–127 (1976)

    MATH  MathSciNet  Google Scholar 

  12. Hochbaum, D.S., Shmoys, D.B.: Using dual approximation algorithms for scheduling problems: practical and theoretical results. Journal of ACM 34(1), 144–162 (1987)

    Article  MathSciNet  Google Scholar 

  13. Garey, M.R., Johnson, D.S.: Computers and Intractability: A guide to the theory of NP-Completeness. W. H. Freeman & Co., New York (1979)

    MATH  Google Scholar 

  14. Lenstra, J.K., Shmoys, D.B., Tardos, E.: Approximation algorithms for scheduling unrelated parallel machines. Mathematical Programming 46, 259–271 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  15. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to algorithms, pp. 1043–1049. The MIT Press, Cambridge (2002)

    Google Scholar 

  16. Maheswaran, M., Ali, S., Siegel, H.J., Hensgen, D., Freund, R.: Dynamic matching and scheduling of a class of independent tasks onto heterogeneous computing systems. In: 8th Heterogeneous Computing Workshop (HCW 1999) (April 1999)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fan, L., Zhang, F., Wang, G., Yuan, B., Liu, Z. (2009). A Self-adaptive Greedy Scheduling Scheme for a Multi-Objective Optimization on Identical Parallel Machines. In: Lee, R., Ishii, N. (eds) Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing. Studies in Computational Intelligence, vol 209. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01203-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01203-7_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01202-0

  • Online ISBN: 978-3-642-01203-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics