Skip to main content

On Voevodsky's Algebraic K-Theory Spectrum

  • Chapter
  • First Online:
Algebraic Topology

Part of the book series: Abel Symposia ((ABEL,volume 4))

Abstract

Under a certain normalization assumption we prove that the P1-spectrum BGL of Voevodsky which represents algebraic K-theory is unique over Spec.(Z). Following an idea of Voevodsky, we equip the P1-spectrum BGL with the structure of a commutative P1-ring spectrum in the motivic stable homotopy category. Furthermore, we prove that under a certain normalization assumption this ring structure is unique over Spec.(Z). For an arbitrary Noetherian scheme S of finite Krull dimension we pull this structure back to obtain a distinguished monoidal structure on BGL. This monoidal structure is relevant for our proof of the motivic Conner–Floyd theorem (Panin et al., Invent Math 175:435–451, 2008). It has also been used to obtain a motivic version of Snaith’s theorem (Gepner and Snaith, arXiv:0712.2817v1 [math.AG]).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Dugger. Replacing model categories with simplicial ones. Trans. Am. Math. Soc. 353 (2001), no. 12, 5003–5027.

    Article  MATH  MathSciNet  Google Scholar 

  2. B. I. Dundas, O. Röndigs, P.A. Østvœr. Motivic functors. Doc. Math. 8 (2003), 489–525.

    MATH  MathSciNet  Google Scholar 

  3. B. I. Dundas, O. Röndigs, P.A. Østvœr. Motivic functors. Doc. Math. 8 (2003), 409–488.

    MATH  MathSciNet  Google Scholar 

  4. E. Friedlander, A. Suslin. The spectral sequence relating algebraic K-theory to motivic cohomology. Ann. Sci. École Norm. Sup. (4) 35 (2002), no. 6, 773–875.

    MathSciNet  Google Scholar 

  5. A. Heller. Homotopy theories. Mem. Amer. Math. Soc. 71 (1988), no. 383, vi+78 pp.

    MathSciNet  Google Scholar 

  6. P. S. Hirschhorn. Model categories and their localizations. Mathematical Surveys and Monographs, 99. American Mathematical Society, Providence, RI, (2003). xvi+457 pp.

    Google Scholar 

  7. M. Hovey. Model categories. Mathematical Surveys and Monographs, 63. American Mathematical Society, Providence, RI, (1999). xii+209 pp.

    Google Scholar 

  8. M. Hovey. Spectra and symmetric spectra in general model categories. J. Pure Appl. Algebra 165 (2001), no. 1, 63–127.

    Article  MATH  MathSciNet  Google Scholar 

  9. M. Hovey, B. Shipley, J. Smith. Symmetric Spectra. J. Am. Math. Soc. 13 (1999), no. 1, 149–208.

    Article  MathSciNet  Google Scholar 

  10. D. Isaksen. Flasque model structures. K-Theory 36 (2005) 371–395.

    Article  MATH  MathSciNet  Google Scholar 

  11. J. F. Jardine. Motivic symmetric spectra. Doc. Math. 5 (2000), 445–553.

    MATH  MathSciNet  Google Scholar 

  12. J. Milnor, J. Stasheff. Characteristic classes. Ann. of Math. Studies. No. 76. Princeton University Press, Princeton (1974).

    Google Scholar 

  13. F. Morel, V. Voevodsky. A 1-homotopy theory of schemes. Publ. IHES 90 (1999) 45–143.

    MATH  MathSciNet  Google Scholar 

  14. I. Panin. (After I. Panin and A. Smirnov) Oriented Cohomology Theories on Algebraic Varieties. Special issue in honor of H. Bass on his seventieth birthday. Part III. K-Theory 30 (2003), no. 3, 265–314.

    Article  MATH  MathSciNet  Google Scholar 

  15. I. Panin, S. Yagunov. Rigidity for orientable functors. J. Pure Appl. Algebra 172 (2002), 49–77.[AU1]

    Article  MATH  MathSciNet  Google Scholar 

  16. D. Quillen. Higher algebraic K-theory: I. Lecture Notes in Mathematics, vol. 341. Springer, Berlin (1973), pp. 85–147.

    Google Scholar 

  17. J. Riou. Opérations sur la K-théorie algébrique et régulateurs via la théorie homotopique des schémas. Comptes Rendus Mathématique. Académie des Sciences. Paris 344 (2007), 27–32.

    Article  MATH  MathSciNet  Google Scholar 

  18. R. M. Switzer. Algebraic topology – homotopy and homology. Springer, Berlin (1975).

    MATH  Google Scholar 

  19. R. Thomason, T. Trobaugh. Higher algebraic K-theory of schemes and of derived categories. The Grothendieck Festschift, 3, 247–436, Birkhäuser, Boston, 1990.

    Article  MathSciNet  Google Scholar 

  20. V. Voevodsky. \(\mathbb{A}^1\)-Homotopy theory. Doc. Math., Extra Volume ICM 1998(I), 579–604.

    Google Scholar 

  21. F. Waldhausen. Algebraic K-theory of spaces. Lecture Notes in Mathematics, vol. 1126. Springer, Berlin (1985), pp. 318–419.

    Article  MathSciNet  Google Scholar 

  22. Ch. Weibel. Homotopy K-theory. In Algebraic K-theory and algebraic number theory. Contemp. Math., vol. 83. AMS, Providence (1989), pp. 461–488.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oliver Röndigs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Panin, I., Pimenov, K., Röndigs, O. (2009). On Voevodsky's Algebraic K-Theory Spectrum. In: Baas, N., Friedlander, E., Jahren, B., Østvær, P. (eds) Algebraic Topology. Abel Symposia, vol 4. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01200-6_10

Download citation

Publish with us

Policies and ethics