Advertisement

On Dynamical Genetic Programming: Random Boolean Networks in Learning Classifier Systems

  • Larry Bull
  • Richard Preen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5481)

Abstract

Many representations have been presented to enable the effective evolution of computer programs. Turing was perhaps the first to present a general scheme by which to achieve this end. Significantly, Turing proposed a form of discrete dynamical system and yet dynamical representations remain almost unexplored within genetic programming. This paper presents results from an initial investigation into using a simple dynamical genetic programming representation within a Learning Classifier System. It is shown possible to evolve ensembles of dynamical Boolean function networks to solve versions of the well-known multiplexer problem. Both synchronous and asynchronous systems are considered.

Keywords

Genetic Programming Boolean Function Cellular Automaton Discrete Dynamical System Evolutionary Search 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ahluwalia, M., Bull, L.: A Genetic Programming Classifier System. In: Banzhaf, W., et al. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference – GECCO 1999, pp. 11–18. Morgan Kaufmann, San Francisco (1999)Google Scholar
  2. 2.
    Andre, D., Koza, J.R., Bennett, F.H., Keane, M.: Genetic Programming III. MIT Press, Cambridge (1999)zbMATHGoogle Scholar
  3. 3.
    Banzhaf, W.: Genetic Programming for Pedestrians. In: Forrest, S. (ed.) Proceedings of the Fifth International Conference on Genetic Algorithms, p. 628. Morgan Kaufmann, San Francisco (1993)Google Scholar
  4. 4.
    Bull, L.: On Using Constructivism in Neural Classifier Systems. In: Guervós, J.J.M., Adamidis, P.A., Beyer, H.-G., Fernández-Villacañas, J.-L., Schwefel, H.-P., et al. (eds.) PPSN 2002. LNCS, vol. 2439, pp. 558–567. Springer, Heidelberg (2002)Google Scholar
  5. 5.
    Bull, L.: Two Simple Learning Classifier Systems. In: Bull, L., Kovacs, T. (eds.) Foundations of Learning Classifier Systems, pp. 63–90. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Bull, L.: Coevolutionary Species Adaptation Genetic Algorithms: A Continuing SAGA on Coupled Fitness Landscapes. In: Capcarrère, M.S., Freitas, A.A., Bentley, P.J., Johnson, C.G., Timmis, J., et al. (eds.) ECAL 2005. LNCS, vol. 3630, pp. 322–331. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Bull, L.: Toward Artificial Creativity with Evolution Strategies. In: Parmee, I. (ed.) Adaptive Computing in Design and Manufacture VIII. IPCC (2008)Google Scholar
  8. 8.
    Bull, L., Hurst, J., Tomlinson, A.: Self-Adaptive Mutation in Classifier System Controllers. In: Meyer, J.-A., et al. (eds.) From Animals to Animats 6, pp. 460–468. MIT Press, Cambridge (2000)Google Scholar
  9. 9.
    Bull, L., Alonso-Sanz, A.: On Coupling Random Boolean Networks. In: Adamatzky, A., Alonso-Sanz, R., Lawniczak, A., Juarez Martinez, G., Morita, K., Worsch, T. (eds.) Automata 2008: Theory and Applications of Cellular Automata, pp. 292–301. Luniver Press (2008)Google Scholar
  10. 10.
    Copeland, J.: The Essential Turing, Oxford (2004)Google Scholar
  11. 11.
    Di Paolo, E.A.: Rhythmic and Non-rhythmic Attractors in Asynchronous Random Boolean Networks. Biosystems 59(3), 185–195 (2001)CrossRefGoogle Scholar
  12. 12.
    Drugowitsch, J.: Design and Analysis of Learning Classifier Systems. Springer, Heidelberg (2008)zbMATHGoogle Scholar
  13. 13.
    Fogel, L.J., Owens, A.J., Walsh, M.J.: Artificial Intelligence Through A Simulation of Evolution. In: Maxfield, M., Callahan, A., Fogel, L.J. (eds.) Biophysics and Cybernetic Systems: Proceedings of the 2nd Cybernetic Sciences Symposium, pp. 131–155. Spartan Books (1965)Google Scholar
  14. 14.
    Forrest, S., Miller, J.H.: The Dynamical Behaviour of Classifier Systems. In: Schaffer, J.D. (ed.) Proceedings of the Third International Conference on Genetic Algorithms, pp. 304–310. Morgan Kaufmann, San Francisco (1989)Google Scholar
  15. 15.
    Gershenson, C.: Classification of Random Boolean Networks. In: Standish, R.K., Bedau, M., Abbass, H. (eds.) Artificial Life VIII, pp. 1–8. MIT Press, Cambridge (2002)Google Scholar
  16. 16.
    Harvey, I., Bossomaier, T.: Time out of Joint: Attractors in Asynchronous Random Boolean Networks. In: Husbands, P., Harvey, I. (eds.) Proceedings of the Fourth European Artificial Life Conference, pp. 67–75. MIT Press, Cambridge (1997)Google Scholar
  17. 17.
    Holland, J.H.: Adaptation in Natural and Artificial Systems. University of Michigan Press (1975)Google Scholar
  18. 18.
    Holland, J.H.: Adaptation. In: Rosen, R., Snell, F.M. (eds.) Progress in Theoretical Biology, vol. 4, pp. 263–293. Plenum, New York (1976)CrossRefGoogle Scholar
  19. 19.
    Hurst, J., Bull, L.: A Self-Adaptive Classifier System. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS, vol. 1996, pp. 70–79. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  20. 20.
    Hurst, J., Bull, L.: A Neural Learning Classifier System with Self-Adaptive Constructivism for Mobile Robot Control. Artificial Life 12(3), 353–380 (2006)CrossRefGoogle Scholar
  21. 21.
    Ingerson, T., Buvel, R.: Structure in Asynchronous Cellular Automata. Physica D 10(1-2), 59–68 (1984)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Kauffman, S.A.: Metabolic Stability and Epigenesis in Randomly Constructed Genetic Nets. Journal of Theoretical Biology 22, 437–467 (1969)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution, Oxford (1993)Google Scholar
  24. 24.
    Koza, J.R.: Genetic Programming. MIT Press, Cambridge (1992)zbMATHGoogle Scholar
  25. 25.
    Lemke, N., Mombach, J., Bodmann, B.: A Numerical Investigation of Adaptation in Populations of Random Boolean Networks. Physica A 301, 589–600 (2001)CrossRefzbMATHGoogle Scholar
  26. 26.
    McCulloch, W.S., Pitts, W.: A Logical Calculus of the Ideas Immanent in Nervous Activity. Bulletin of Mathematical Biophysics 5, 115–133 (1943)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Mesot, B., Teuscher, C.: Deducing Local Rules for Solving Global Tasks with Random Boolean Networks. Physica D 211(1-2), 88–106 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Miller, J.: An Empirical Study of the Efficiency of Learning Boolean Functions using a Cartesian Genetic Programming Approach. In: Banzhaf, W., Daida, J., Eiben, A.E., Garzon, M.H., Honavar, V., Jakiela, M., Smith, R.E. (eds.) Proceedings of the Genetic and Evolutionary Computation Conference – GECCO 1999, pp. 1135–1142. Morgan Kaufmann, San Francisco (1999)Google Scholar
  29. 29.
    Mitchell, M., Hraber, P., Crutchfield, J.: Revisiting the Edge of Chaos: Evolving Cellular Automata to Perform Computations. Complex Systems 7, 83–130 (1993)zbMATHGoogle Scholar
  30. 30.
    Niehaus, J., Banzhaf, W.: Adaption of operator Probabilities in Genetic Programming. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 325–336. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  31. 31.
    Packard, N.: Adaptation Toward the Edge of Chaos. In: Kelso, J., Mandell, A., Shlesinger, M. (eds.) Dynamic Patterns in Complex Systems, pp. 293–301. World Scientific, Singapore (1988)Google Scholar
  32. 32.
    Pujol, J., Poli, R.: Efficient Evolution of Asymmetric Recurrent Neural Networks using a PDGP-inspired two-dimensional Representation. In: Banzhaf, W., Poli, R., Schoenauer, M., Fogarty, T.C. (eds.) EuroGP 1998. LNCS, vol. 1391, pp. 130–141. Springer, Heidelberg (1998)CrossRefGoogle Scholar
  33. 33.
    Quick, T., Nehaniv, C., Dautenhahn, K., Roberts, G.: Evolving Embedded Genetic Regulatory Network-Driven Control Systems. In: Banzhaf, W., Ziegler, J., Christaller, T., Dittrich, P., Kim, J.T. (eds.) ECAL 2003. LNCS, vol. 2801, pp. 266–277. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  34. 34.
    Schmidt, M., Lipson, H.: Comparison of Tree and Graph Encodings as Function of Problem Complexity. In: Proceedings of the Genetic and Evolutionary Computation Conference – GECCO 2007, pp. 1674–1679. ACM Press, New York (2007)Google Scholar
  35. 35.
    Schwefel, H.-P.: Numerical Optimization of Computer Models. Wiley, Chichester (1981)zbMATHGoogle Scholar
  36. 36.
    Sipper, M.: Evolution of Parallel Cellular Machines. Springer, Heidelberg (1997)CrossRefzbMATHGoogle Scholar
  37. 37.
    Sipper, M., Tomassini, M., Capcarrere, S.: Evolving Asynchronous and Scalable Non-uniform Cellular Automata. In: Proceedings of the Third International Conference on Artificial Neural Networks and Genetic Algorithms, pp. 66–70. Springer, Heidelberg (1997)Google Scholar
  38. 38.
    Teller, A., Veloso, M.: Neural Programming and an Internal Reinforcement Policy. In: Koza, J.R. (ed.) Late Breaking Papers at the Genetic Programming 1996 Conference, pp. 186–192. Stanford University (1996)Google Scholar
  39. 39.
    Teuscher, C.: Turing’s Connectionism. Springer, Heidelberg (2002)CrossRefzbMATHGoogle Scholar
  40. 40.
    Turing, A.: Intelligent Machinery. In: [Copeland, 2004], pp. 395–432 (1948)Google Scholar
  41. 41.
    Valenzuela-Rendon, M.: The Fuzzy Classifier System: a Classifier System for Continuously Varying Variables. In: Booker, L., Belew, R. (eds.) Proceedings of the Fourth International Conference on Genetic Algorithms, pp. 346–353. Morgan Kaufmann, San Francisco (1991)Google Scholar
  42. 42.
    Van den Broeck, C., Kawai, R.: Learning in Feedforward Boolean Networks. Physical Review A 42, 6210–6218 (1990)CrossRefGoogle Scholar
  43. 43.
    Von Neumann, J.: The Theory of Self-Reproducing Automata. University of Illinois, US (1966)Google Scholar
  44. 44.
    Wilson, S.W.: Classifier Fitness Based on Accuracy. Evolutionary Comp. 3, 149–175 (1995)CrossRefGoogle Scholar
  45. 45.
    Wilson, S.W.: Get Real! XCS with Continuous-Valued Inputs. In: Lanzi, P.-L., Stolzmann, W., Wilson, S.W. (eds.) Learning Classifier Systems: From Foundations to Applications, pp. 209–222. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  46. 46.
    Wilson, S.W.: Mining Oblique Data with XCS. In: Lanzi, P.L., Stolzmann, W., Wilson, S.W. (eds.) IWLCS 2000. LNCS, vol. 1996, pp. 158–176. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Larry Bull
    • 1
  • Richard Preen
    • 1
  1. 1.Department of Computer ScienceUniversity of the West of EnglandBristolUK

Personalised recommendations