Comparison of CGP and Age-Layered CGP Performance in Image Operator Evolution

  • Karel Slaný
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5481)


This paper analyses the efficiency of the Cartesian Genetic Programming (CGP) methodology in the image operator design problem at the functional level. The CGP algorithm is compared with an age layering enhancement of the CGP algorithm by the means of achieved best results and their computational effort. Experimental results show that the Age-Layered Population Structure (ALPS) algorithm combined together with CGP can perform better in the task of image operator design in comparison with a common CGP algorithm.


Candidate Solution Crossover Operator Programmable Element Image Operator Aging Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Cavicchio, D.J.: Adaptive search using simulated evolution. Ph.D thesis, University of Michigan (1970)Google Scholar
  2. 2.
    Collins, M.: Finding needles in haystacks is harder with neutrality. Genetic Programming and Evolvable Machines 7(2), 131–144 (2006)CrossRefGoogle Scholar
  3. 3.
    De Jong, K.A.: Analysis of the Behavior of a Class of Genetic Adaptive Systems. Ph.D thesis. University of Michigan (1975)Google Scholar
  4. 4.
    Hornby, G.S.: Alps: the age-layered population structure for reducing the problem of premature convergence. In: GECCO 2006: Proceedings of the 8th annual conference on Genetic and evolutionary computation, pp. 815–822. ACM, New York (2006)Google Scholar
  5. 5.
    Martínek, T., Sekanina, L.: An evolvable image filter: Experimental evaluation of a complete hardware implementation in fpga. In: Moreno, J.M., Madrenas, J., Cosp, J. (eds.) ICES 2005. LNCS, vol. 3637, pp. 76–85. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  6. 6.
    Miller, J.F.: What bloat? cartesian genetic programming on boolean problems. In: 2001 Genetic and Evolutionary Computation Conference Late Breaking Papers, pp. 295–302 (2001)Google Scholar
  7. 7.
    Miller, J.F., Smith, S.L.: Redundancy and computational efficiency in cartesian genetic programming. IEEE Trans. Evolutionary Computation 10(2), 167–174 (2006)CrossRefGoogle Scholar
  8. 8.
    Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Poli, R., Banzhaf, W., Langdon, W.B., Miller, J., Nordin, P., Fogarty, T.C. (eds.) EuroGP 2000. LNCS, vol. 1802, pp. 121–132. Springer, Heidelberg (2000)CrossRefGoogle Scholar
  9. 9.
    Sekanina, L.: Image filter design with evolvable hardware. In: Cagnoni, S., Gottlieb, J., Hart, E., Middendorf, M., Raidl, G.R. (eds.) EvoIASP 2002, EvoWorkshops 2002, EvoSTIM 2002, EvoCOP 2002, and EvoPlan 2002. LNCS, vol. 2279, pp. 255–266. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Sekanina, L.: Evolvable Components: From Theory to Hardware. Springer, Heidelberg (2004)CrossRefzbMATHGoogle Scholar
  11. 11.
    Skolicki, Z., De Jong, K.A.: Improving evolutionary algorithms with multi-representation island models. In: Yao, X., Burke, E.K., Lozano, J.A., Smith, J., Merelo-Guervós, J.J., Bullinaria, J.A., Rowe, J.E., Tiňo, P., Kabán, A., Schwefel, H.-P. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 420–429. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  12. 12.
    Slaný, K., Sekanina, L.: Fitness landscape analysis and image filter evolution using functional-level cgp. In: Ebner, M., O’Neill, M., Ekárt, A., Vanneschi, L., Esparcia-Alcázar, A.I. (eds.) EuroGP 2007. LNCS, vol. 4445, pp. 311–320. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  13. 13.
    Walker, J.A., Miller, J.F.: Investigating the performance of module acquisition in cartesian genetic programming. In: GECCO 2005: Proceedings of the 2005 conference on Genetic and evolutionary computation, pp. 1649–1656. ACM, New York (2005)Google Scholar
  14. 14.
    Yu, T., Miller, J.F.: Neutrality and the evolvability of boolean function landscape. In: Miller, J., Tomassini, M., Lanzi, P.L., Ryan, C., Tetamanzi, A.G.B., Langdon, W.B. (eds.) EuroGP 2001. LNCS, vol. 2038, pp. 204–217. Springer, Heidelberg (2001)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Karel Slaný
    • 1
  1. 1.Faculty of Information TechnologyBrno University of TechnologyBrnoCzech Republic

Personalised recommendations