Quantum Circuit Synthesis with Adaptive Parameters Control

  • Cristian Ruican
  • Mihai Udrescu
  • Lucian Prodan
  • Mircea Vladutiu
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5481)


The contribution presented herein proposes an adaptive genetic algorithm applied to quantum logic circuit synthesis that dynamically adjusts its control parameters. The adaptation is based on statistical data analysis for each genetic operator type, in order to offer the appropriate exploration at algorithm runtime without user intervention. The applied performance measurement attempts to highlight the “good” parameters and to introduce an intuitive meaning for the statistical results. The experimental results indicate an important synthesis runtime speedup. Moreover, while other GA approaches can only tackle the synthesis for quantum circuits over a small number of qubits, this algorithm can be employed for circuits that process up to 5-6 qubits.


Genetic Algorithm Quantum Circuit Crossover Probability Quantum Gate Adaptive Genetic Algorithm 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ruican, C., Udrescu, M., Prodan, L., Vladutiu, M.: Automatic Synthesis for Quantum Circuits Using Genetic Algorithms. In: Beliczynski, B., Dzielinski, A., Iwanowski, M., Ribeiro, B. (eds.) ICANNGA 2007. LNCS, vol. 4431, pp. 174–183. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  2. 2.
    Ruican, C., Udrescu, M., Prodan, L., Vladutiu, M.: A Genetic Algorithm Framework Applied to Quantum Circuit Synthesis. Nature Inspired Cooperative Strategies for Optimization (2007)Google Scholar
  3. 3.
    Ruican, C., Udrescu, M., Prodan, L., Vladutiu, M.: Software Architecture for Quantum Circuit Synthesis. In: International Conference on Artificial Intelligence and Soft Computing (2008)Google Scholar
  4. 4.
    Eiben, E.A., Michalewicz, Z., Schoenauer, M., Smith, J.E.: Parameter Control in Evolutionary Algorithms. In: Parameter Setting in Evolutionary Algorithms (2007)Google Scholar
  5. 5.
    Maslov, D.: Reversible Logic Synthesis Benchmarks Page (2008),
  6. 6.
    Maslov, D., Dueck, G.W., Miller, M.D.: Quantum Circuit Simplification and Level Compaction. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (2008)Google Scholar
  7. 7.
    Herrera, F., Lozano, M.: Fuzzy adaptive genetic algorithms: design, taxonomy, and future directions. Soft Computing 7(8), 545–562 (2003)CrossRefGoogle Scholar
  8. 8.
    Stillerman, M., Guaspari, D., Polak, W.: Final Report-A Design Language for Quantum Computing. Odyssey Research Associates, Inc., New York (2003)Google Scholar
  9. 9.
    Svore, K., Cross, A., Aho, A., Chuang, I., Markov, I.: Toward a Software Architecture for Quantum Computing Design Tools. IEEE Computer, Los Alamitos (2006)Google Scholar
  10. 10.
    Rubinstein, B.I.P.: Evolving quantum circuits using genetic programming. In: Proceedings of the 2001 Congress on Evolutionary Computation (2001)Google Scholar
  11. 11.
    Gheorghies, O., Luchian, H., Gheorghies, A.: Walking the Royal Road with Integrated-Adaptive Genetic Algorithms. University Alexandru Ioan Cuza of Iasi (2005),
  12. 12.
    Lukac, M., Perkowski, M.: Evolving quantum circuits using genetic algorithm. In: Proceedings of the 2002 NASA/DOD Conference on Evolvable Hardware (2002)Google Scholar
  13. 13.
    Van Meter, R., Munro, V.J., Nemoto, K., Itoh, K.M.: Arithmetic on a Distributed-Memory Quantum Multicomputer. ACM Journal on Emerging Technologies in Computer Systems 3(4), A17 (2008)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Cristian Ruican
    • 1
  • Mihai Udrescu
    • 1
  • Lucian Prodan
    • 1
  • Mircea Vladutiu
    • 1
  1. 1.Advanced Computing Systems and Architectures LaboratoryUniversity “Politehnica” TimisoaraTimisoaraRomania

Personalised recommendations