On the Effectiveness of Evolution Compared to Time-Consuming Full Search of Optimal 6-State Automata

  • Marcus Komann
  • Patrick Ediger
  • Dietmar Fey
  • Rolf Hoffmann
Part of the Lecture Notes in Computer Science book series (LNCS, volume 5481)


The Creature’s Exploration Problem is defined for an independent agent on regular grids. This agent shall visit all non-blocked cells in the grid autonomously in shortest time. Such a creature is defined by a specific finite state machine. Literature shows that the optimal 6-state automaton has already been found by simulating all possible automata. This paper tries to answer the question if it is possible to find good or optimal automata by using evolution instead of time-consuming full simulation. We show that it is possible to achieve 80% to 90% of the quality of the best automata with evolution in much shorter time.


State Machine Genetic Programming Regular Grid Problem Space Travelling Salesperson Problem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Komann, M., Fey, D.: Realising emergent image preprocessing tasks in cellular-automaton-alike massively parallel hardware. International Journal of Parallel, Emergent and Distributed Systems 22(2), 79–89 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Koza, J.R.: Scalable learning in genetic programming using automatic function definition, pp. 99–117 (1994)Google Scholar
  3. 3.
    Halbach, M.: Algorithmen und Hardwarearchitekturen zur optimierten Aufzählung von Automaten und deren Einsatz bei der Simulation künstlicher Kreaturen. Ph.D thesis, Technische Universität Darmstadt (2008)Google Scholar
  4. 4.
    Halbach, M., Hoffmann, R., Both, L.: Optimal 6-state algorithms for the behavior of several moving creatures. In: El Yacoubi, S., Chopard, B., Bandini, S. (eds.) ACRI 2006. LNCS, vol. 4173, pp. 571–581. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    Konak, A., Coit, D.W., Smith, A.E.: Multi-objective optimization using genetic algorithms: A tutorial. Reliability Engineering & System Safety 91(9), 992 (2006); Special Issue - Genetic Algorithms and Reliability CrossRefGoogle Scholar
  6. 6.
    Walker, J.A., Miller, J.F.: Solving real-valued optimisation problems using cartesian genetic programming. In: GECCO 2007: Proceedings of the 9th annual conference on Genetic and evolutionary computation, pp. 1724–1730. ACM, New York (2007)Google Scholar
  7. 7.
    Padhye, N.: Interplanetary trajectory optimization with swing-bys using evolutionary multi-objective optimization. In: GECCO 2008: Proceedings of the 2008 GECCO conference companion on Genetic and evolutionary computation, pp. 1835–1838. ACM, New York (2008)CrossRefGoogle Scholar
  8. 8.
    Fogel, D.B.: An evolutionary approach to the traveling salesman problem. Biological Cybernetics 60(2), 139–144 (1988)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Bruce, W.S.: The lawnmower problem revisited: Stack-based genetic programming and automatically defined functions. In: Genetic Programming 1997: Proceedings of the Second Annual Conference, pp. 52–57. Morgan Kaufmann, San Francisco (1997)Google Scholar
  10. 10.
    Halbach, M., Heenes, W., Hoffmann, R., Tisje, J.: Optimizing the behavior of a moving creature in software and in hardware. In: Sloot, P.M.A., Chopard, B., Hoekstra, A.G. (eds.) ACRI 2004. LNCS, vol. 3305, pp. 841–850. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  11. 11.
    Mesot, B., Sanchez, E., Peña, C.-A., Perez-Uribe, A.: SOS++: Finding smart behaviors using learning and evolution. In: Standish, R., Bedau, M., Abbass, H. (eds.) Artificial Life VIII: The 8th International Conference on Artificial Life, pp. 264–273. MIT Press, Cambridge (2002)Google Scholar
  12. 12.
    Di Stefano, B.N., Lawniczak, A.T.: Autonomous roving object’s coverage of its universe. In: CCECE, pp. 1591–1594. IEEE, Los Alamitos (2006)Google Scholar
  13. 13.
    Holland, J.H.: Genetic algorithms - computer programs that “evolve” in ways that resemble natural selection can solve complex problems even their creators do not fully understand. Scientific American 267, 66–72 (1992)CrossRefGoogle Scholar
  14. 14.
    Mitchell, M., Hraber, P.T., Crutchfield, J.P.: Revisiting the edge of chaos: evolving cellular automata to perform computations. Technical Report Santa Fe Institute Working Paper 93-03-014 (1993)Google Scholar
  15. 15.
    Storn, R., Price, K.: Differential evolution – a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization 11(4), 341–359 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Michalewicz, Z.: Genetic algorithms + data structures = evolution programs, 3rd edn. Springer, London (1996)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Marcus Komann
    • 1
  • Patrick Ediger
    • 2
  • Dietmar Fey
    • 1
  • Rolf Hoffmann
    • 2
  1. 1.Chair for Computer ArchitectureFriedrich-Schiller-University Jena,GermanyJenaGermany
  2. 2.FB Informatik, FG RechnerarchitekturTechnische Universität Darmstadt, GermanyDarmstadtGermany

Personalised recommendations